Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

250090 SE Applied Machine Learning (2025S)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

    Termine (iCal) - nächster Termin ist mit N markiert

    First seminar is an organisational meeting: HS11 Wed March 5, 16:45.
    During the rest of the semester, the seminar always takes place when presentations or meetings for supervision and discussion are planned and announced in advance.

    • Mittwoch 19.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 26.03. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 02.04. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 09.04. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 30.04. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 07.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 14.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 21.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 28.05. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 04.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 11.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 18.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    • Mittwoch 25.06. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock

    Information

    Ziele, Inhalte und Methode der Lehrveranstaltung

    This (project) seminar provides a forum for students to work out, present and discuss topics of "Applied Machine Learning" and an opportunity to deepen your knowledge obtained from previous machine learning courses such as the same-titled lecture and pro-seminar (250039/250044).

    Topics may cover, but are not limited to,
    -) computational/numerical aspects, approaches and algorithms related to machine learning including, but not limited to, supervised and unsupervised learning methods, learning algorithms and computational optimization, reinforcement learning, extreme learning, deep learning, transfer learning, kernel methods, high-dimensional (parametric) (differential) equations, physics-informed and physics-aware machine learning, physics-informed neural networks, genetic algorithms, computer vision, evolution-based methods, automated knowledge acquisition, visualization of patterns in data, multi-strategy learning, multi-agent learning.
    -) statistical modeling and engineering applications of machine learning / artificial intelligence including, but not limited to, data mining & big data, computer vision, natural language processing (NLP), intelligent systems, neural networks, AI-based software engineering, robotics and control, physics & astronomy, quantum methods in machine learning, bioinformatics, medicine, healthcare, biology, climate, education, business, finance and social sciences.
    -) explainable AI (XAI) and trustworthy AI (TAI)

    Topics freely chosen by the students can be pursued in consultation with the supervisor. Students are expected to conduct an independent literature search from text book chapter(s), scientific research publication(s), thesis/theses etc.
    At least two of the following aspects should be covered: modeling, (numerical) analysis, numerical methods/algorithms, computer simulations, applications.
    Each student develops a selected topic for an oral presentation and a written report, under the guidance of the professor but otherwise independently.

    Art der Leistungskontrolle und erlaubte Hilfsmittel

    classroom presentation (25+5 minutes) and a concise written report.

    Mindestanforderungen und Beurteilungsmaßstab

    presentation + workout

    Prüfungsstoff

    presentation + workout

    Literatur

    depending on the chosen project, research paper(s), book chapter(s),...

    Zuordnung im Vorlesungsverzeichnis

    MAMS

    Letzte Änderung: Fr 10.01.2025 00:02