Universität Wien

250091 SE Kähler Geometry (2023W)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Prüfungsimmanente Lehrveranstaltung
GEMISCHT

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Termine vor Ort werden rechtzeitig angekündigt

  • Donnerstag 05.10. 14:30 - 16:30 Digital
  • Donnerstag 12.10. 14:30 - 16:30 Digital
  • Donnerstag 19.10. 14:30 - 16:30 Digital
  • Donnerstag 09.11. 14:30 - 16:30 Digital
  • Donnerstag 16.11. 14:30 - 16:30 Digital
  • Donnerstag 23.11. 14:30 - 16:30 Digital
  • Donnerstag 30.11. 14:30 - 16:30 Digital
  • Donnerstag 07.12. 14:30 - 16:30 Digital
  • Donnerstag 14.12. 14:30 - 16:30 Digital
  • Donnerstag 11.01. 14:30 - 16:30 Digital
  • Donnerstag 18.01. 14:30 - 16:30 Digital
  • Donnerstag 25.01. 14:30 - 16:30 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This seminar is going to be split between a reading seminar covering the basics of Kähler geometry in the first part and looking at some more current literature in the second part (we will adapt the distribution between these two parts to the level of preparedness of the participants; I'm expecting at least some analysis on manifolds, and some knowledge of Riemannian geometry will be useful). The participants will present the assigned chapters to each other in the first part as well as give a summary of a research paper in the second part. We therefore train the presentation of material from a textbook source as well as reading and summarizing a research paper.

Art der Leistungskontrolle und erlaubte Hilfsmittel

At least two graded presentations during the semester (maybe more, depends on the number of participants).

Mindestanforderungen und Beurteilungsmaßstab

The final grade will be the average of the individual presentation grades.

Prüfungsstoff

For the presentations: a clear presentation and suitable command of the material presented. We'll share a detailed rubric in the first session.

Literatur

Székelyhidi, Gábor(1-NDM)
An introduction to extremal Kähler metrics.
Grad. Stud. Math., 152
American Mathematical Society, Providence, RI, 2014. xvi+192 pp.
ISBN:978-1-4704-1047-6

Jean-Pierre Demailly
Complex Analytic and Differential Geometry
(available from https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf )

Papers will be discussed in session.

Zuordnung im Vorlesungsverzeichnis

MANS; MGES

Letzte Änderung: Sa 14.10.2023 14:27