250093 VO Introduction to category theory (2015S)
Labels
Details
Sprache: Englisch
Prüfungstermine
- Donnerstag 09.07.2015
- Mittwoch 22.07.2015
- Donnerstag 17.12.2015
- Donnerstag 21.01.2016
- Dienstag 26.01.2016
- Mittwoch 16.03.2016
- Mittwoch 06.04.2016
- Mittwoch 29.06.2016
- Freitag 29.09.2017
- Freitag 13.10.2017
- Donnerstag 11.01.2018
- Freitag 23.11.2018
- Freitag 14.12.2018
- Freitag 20.11.2020
Lehrende
Termine
Beginn: Donnerstag, 19. März 2015 (später Beginn wegen Connes' Vortrag am 5.3. und Rektorstag am 12.3.)
Schrödinger Lecture Hall im Erwin-Schrödinger-InstitutTermine: Donnerstag 11:15 bis 12:45 UhrInformation
Ziele, Inhalte und Methode der Lehrveranstaltung
This course is an introduction to category theory, a theory of structures and powerful organising principles with many applications. We start with an extended discussion of the basic definitions and properties of categories and functors, with many illustrating and motivating examples from various areas of mathematics.Important milestones of later parts of the lecture course will be the study of universal properties in the following guises: (i) adjoint functors; (ii) representability and the Yoneda lemma; (iii) limits (special cases of which are products, equalisers, or pullbacks) and colimits (e.g. sums, coequalisers, or pushouts).The last part of the course will depend on the audience's taste; possible topics include (a) (co)ends (generalising (co)limits) and Kan extensions; (b) the relation to logic and computer science (lambda calculus and Curry-Howard correspondence), (c) monoidal categories with additional structures (relevant e.g. for topological and conformal field theories), or (d) aspects of "categorification" (e.g. of representations of Lie algebras or of polynomial knot invariants).
Art der Leistungskontrolle und erlaubte Hilfsmittel
oral exams at the end of the course
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Zuordnung im Vorlesungsverzeichnis
MALV, MGEV
Letzte Änderung: Sa 21.11.2020 00:21