Universität Wien

250097 VO Introduction to Mathematical logic (2024W)

6.00 ECTS (4.00 SWS), SPL 25 - Mathematik

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 01.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 03.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 08.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 10.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 15.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 17.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 22.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 24.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 29.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 31.10. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 05.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 07.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 12.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 14.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 19.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 21.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 26.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 28.11. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 03.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 05.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 10.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 12.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 17.12. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 07.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 09.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 14.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 16.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 21.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Donnerstag 23.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01
  • Dienstag 28.01. 08:00 - 09:30 Seminarraum 10, Kolingasse 14-16, OG01

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This class is an introduction to mathematical logic. The primary goal is to take a deep dive into first-order logic by unraveling the connections between its syntax and its semantics. Some highlights will be: Gödel's Completeness Theorem and the Compactness Theorem for first-order logic; the Back and Forth method and Ehrenfeucht-Fraïssé games; Elimination of Quantifiers; Tarski's Theorem on the non-definability of truth; and Gödel's Incompleteness Theorems. In the process we will cover some basics of model theory, recursion theory and set theory and discuss applications to algebra, combinatorics, and other areas of mathematics.

Art der Leistungskontrolle und erlaubte Hilfsmittel

There will be a final exam during the last lecture. A couple more exam dates will be announced later, to take place during the summer semester of 2024.

Mindestanforderungen und Beurteilungsmaßstab

Pass the final exam.

Prüfungsstoff

For the final exam you will need to know the material covered in the lecture and the discussion sessions, and be able to apply it. I will regularly assign problems that will help you deepen your understanding of the material. You should expect similar problems to appear on the final.

Literatur

In terms of which topics we will cover and in what order, we will closely follow the books:

(1) "A first journey through logic" by M. Hils and F. Loeser
https://webusers.imj-prg.fr/~francois.loeser/stml089.pdf

and
(2) "An Invitation to Mathematical Logic" by D. Marker

Another good source is Lou van den Dries' "Mathematical Logic Lecture Notes" which can be found, for example, here: https://www.mat.univie.ac.at/~panagiotopoulos/2019.pdf

Zuordnung im Vorlesungsverzeichnis

MLOL

Letzte Änderung: Di 01.04.2025 16:06