Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
250103 VU Introduction to Mathematical Methods in Continuum Mechanics (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Sa 01.02.2025 00:00 bis So 23.02.2025 23:59
- Abmeldung bis Mo 31.03.2025 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- N Montag 03.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 10.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 17.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 24.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 31.03. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 07.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 28.04. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 05.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 12.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 19.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 26.05. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 02.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 16.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 23.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 30.06. 08:00 - 09:30 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Continuum mechanics is a special branch of physics which deals with the mechanical properties of solids and fluids and their deformations and flows under forces. The underlying theory has a wide range of practical applications in industry and science.This course focuses on a mathematical framework for studying the behavior of solids and liquids at a macroscopic scale within the continuum concept of matter. As the starting point for modeling of materials, the foundational notions of deformation, motion, strain, force and stress are introduced. These are then followed by the derivation of the fundamental equations of equilibrium and motion. Combined together with constitutive laws, they yield relevant partial differential equations. In addition, one classical simplification of an elastic material law (linearized elasticity) is discussed and analyzed in the course. If time permits, mathematical models for fluid dynamics will also be covered in the lecture.Another part of the course consists of exercises (given as homework), illustrating the analytical methods, which are to be handed in by the students in written form. During the second half of the semester, a small programming project is planned (numerical solution of the equations of linear elasticity in python).
Art der Leistungskontrolle und erlaubte Hilfsmittel
Understanding the key concepts of continuum mechanics and underlying equations.Lecture attendance. At least 50% of solved exercises. Positively solved programming project.Either written or oral examination, depending on the number of course participants.
Mindestanforderungen und Beurteilungsmaßstab
Lecture attendance. At least 50% of solved exercises. Positively solved programming project.
Prüfungsstoff
Topics covered in the course.
Literatur
G. E. Mase Theory and Problems of Continuum Mechanics, in Series: Schaum’s Outline Series, 1970.
P. G. Ciarlet Mathematical elasticity, Volume I: Three-dimensional elasticity, in Studies in Series: mathematics and its applications, 1988.
P. G. Ciarlet Mathematical elasticity, Volume I: Three-dimensional elasticity, in Studies in Series: mathematics and its applications, 1988.
Zuordnung im Vorlesungsverzeichnis
MAMV;MANV
Letzte Änderung: Fr 10.01.2025 00:02