Universität Wien

250108 VO Mathematische Modellierung (2016S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

Information des SPL: diese VO (mit zugehöriger UE) ist als Wahlmodul in beiden Mathematik-Bachelorcurrucula verwendbar (Versionen 2011 und 2014) oder auch als Ersatz für die Pflicht-VO "Modellierung" in der Curriculumsversion 2011.

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 01.03. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 08.03. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 15.03. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 05.04. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 12.04. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 19.04. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 26.04. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 03.05. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 10.05. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 24.05. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 31.05. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 07.06. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 14.06. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 21.06. 12:30 - 14:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

In the course of this module, the students get to know mathematics in its role as a modeling language for selected applications from physics, natural science, economics, or social sciences.
Course outline: Introduction to mathematical modeling: dimensional analysis and scaling, stability analysis, introductory examples; discrete models in finance and population dynamics; algebraic linear systems modeling of electric and mechanical networks; ordinary differential equation models in mechanics and population dynamics; hints on partial differential equation models in physics and natural sciences.
http://www.mat.univie.ac.at/~perugia/TEACHING/MODELLSS2016/modellSS2016.html

Art der Leistungskontrolle und erlaubte Hilfsmittel

Final written exam.

Mindestanforderungen und Beurteilungsmaßstab

Modeling with algebraic equations, difference equations, and differential equations; solutions in simple situations.

Prüfungsstoff

All topics covered in the lectures.

Literatur

Suggested reading: Christof Eck, Harald Garcke, Peter Knabner, Mathematische Modellierung, Springer-Lehrbuch, 2011. Additional material will be distributed during the course.

Zuordnung im Vorlesungsverzeichnis

WMO, BMD

Letzte Änderung: Mo 07.09.2020 15:40