250115 VO Mathematical models of chemical and metabolic networks (2021W)
Labels
VOR-ORT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
-
Mittwoch
06.10.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
13.10.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
20.10.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
27.10.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
03.11.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
10.11.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
17.11.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
24.11.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
01.12.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
15.12.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
12.01.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
19.01.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock -
Mittwoch
26.01.
13:15 - 14:45
Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
AimsFundamental cellular functions including signaling, gene regulation, and metabolism involve numerous molecular species interacting via chemical reactions. More than one century of biochemistry and several decades of molecular biology have provided an unprecedented window into the complexity of such chemical reaction networks in living cells. Recent experimental techniques even allow real-time observations of complex dynamical behaviour such as hysteresis, oscillations, and stochastic fluctuations.Mathematics has played a pivotal role in coping with the complexity of chemical reaction networks and is a cornerstone of current systems biology. In this lecture, we will consider two modeling frameworks in more detail.ContentsChemical networks: Many cellular systems can be modeled as networks of chemical reactions, often with mass-action kinetics (leading to ordinary differential equations with polynomial right-hand sides). Interestingly, for large classes of networks, the qualitative behaviour of the dynamical systems is independent of the system parameters.In this lecture, we will prove a classical result that guarantees existence, uniqueness, and stability of positive equilibria independently of the rate constants (for networks with deficiency zero). Moreover, we will study extensions of the theory to systems with generalized mass-action kinetics.Metabolic networks: As a particular cellular system, metabolism is modeled as a network of enzymatic reactions, often without exact knowledge of the kinetics. Since cellular organisms survive and reproduce in complex environments under permanent evolutionary pressure, metabolic pathways are assumed to be highly adapted, and optimality principles are used to study the organization of metabolism. Traditionally, the analysis of genome-scale metabolic models is based on stoichiometric data, leading to linear programs for fluxes (steady-state reaction rates).In this lecture, we will also consider kinetic data and study optimal enzyme allocation, leading to nonlinear problems. Importantly, optimal solutions are (combinations of) elementary flux modes (elementary vectors of the flux cone), representing minimal metabolic pathways.MethodsFor the study of chemical and metabolic networks, we combine concepts and methods from graph theory, dynamical systems, polyhedral geometry, and oriented matroids (such as Laplacian matrices, Lyapunov functions, polyhedral cones, and elementary vectors).
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Chemical reaction networksFeinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019Mueller and Regensburger, Generalized Mass-Action Systems ... , 2014.
https://arxiv.org/abs/1406.6587Metabolic networksMueller and Regensburger, Elementary Vectors and Conformal Sums ... , 2016.
http://journal.frontiersin.org/article/10.3389/fgene.2016.00090/fullMueller, Regensburger, and Steuer, Enzyme allocation problems in kinetic metabolic networks ... , 2014.
https://arxiv.org/abs/1308.0510
https://arxiv.org/abs/1406.6587Metabolic networksMueller and Regensburger, Elementary Vectors and Conformal Sums ... , 2016.
http://journal.frontiersin.org/article/10.3389/fgene.2016.00090/fullMueller, Regensburger, and Steuer, Enzyme allocation problems in kinetic metabolic networks ... , 2014.
https://arxiv.org/abs/1308.0510
Zuordnung im Vorlesungsverzeichnis
MBIV
Letzte Änderung: Mi 27.07.2022 15:08