Universität Wien

250159 VO Geometrie und Lineare Algebra für das Lehramt (2025S)

8.00 ECTS (5.00 SWS), SPL 25 - Mathematik

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Deutsch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 03.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 04.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 05.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 10.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 11.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 17.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 18.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 19.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 24.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 25.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 31.03. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 01.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 02.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 07.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 08.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 29.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 30.04. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 05.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 06.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 12.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 13.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 14.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 19.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 20.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 26.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 27.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 28.05. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 02.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 03.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 10.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 11.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 16.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 17.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Montag 23.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Dienstag 24.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Mittwoch 25.06. 08:00 - 09:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Vorlesung lässt sich inhaltlich in drei Teile gliedern:

1. Synthetische Geometrie: Anhand Hilberts Axiomensystem wird ein axiomatischer Zugang zur Euklidischen Geometrie der Ebene skizziert. Wir behandeln u.A.: Kongruenz- und Ähnlichkeitssätze für Dreiecke, Strahlensatz, Satz von Thales, Satzgruppe des Pythagoras, Peripheriewinkelsatz, Eulersche Gerade, Schnitt von Kreisen und Geraden, Tangenten an Kreise.

2. Analytische Geometrie: Mit Hilfe von Koordinatensystemen wird die Euklidische Ebene mit R^2 identifiziert und ihre Geometrie algebraisch beschrieben. Wir behandeln u.A.: Teilverhältnis, kartesische Koordinaten, Beschreibung von Geraden in Koordinaten, Trigonometrie, Isometrien der Ebene, Kegelschnitte.

3. Lineare Algebra in R^n: Matrizen und lineare Abbildungen, Basen und Dimension von Teilräumen des R^n, Dimensionsformel für lineare Abbildungen, Matrizenrang, lineare Gleichungssysteme und Elimination, Inversion von Matrizen, Determinante, Eigenwerte und Eigenvektoren.

Livestreams und Aufzeichnungen der einzelnen Vorlesungen werden im Moodlekurs (Link weiter oben) bereitgestellt.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Die Pruefung ist schriftlich und wird im Hoersaal stattfinden. Sie wird aus offenen Fragen bestehen und 90 Minuten dauern. Dabei sind keine Hilfsmittel erlaubt.

Mindestanforderungen und Beurteilungsmaßstab

Beurteilung abhaengig vom Anteil erreichter Punkte wie folgt:
0-50% Nicht Genuegend
50-62.5% Genuegend
62.5-75% Befriedugen
75-87.5% Gut
87.5%-100% Sehr Gut

Prüfungsstoff

gesamter Inhalt der Vorlesung

Literatur

Vorlesungsskriptum

Zuordnung im Vorlesungsverzeichnis

UFMA03

Letzte Änderung: Do 27.02.2025 17:46