Universität Wien

250164 VO Discrete & Convex Geometry and Singular Homology (2023W)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik
VOR-ORT

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Dienstag 03.10. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 04.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 10.10. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 11.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 17.10. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 18.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 24.10. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 25.10. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 31.10. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 07.11. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 08.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 14.11. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 15.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 21.11. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 22.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 28.11. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 29.11. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 05.12. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 06.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 12.12. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 13.12. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 09.01. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 10.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 16.01. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 17.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 23.01. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 24.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Dienstag 30.01. 16:45 - 17:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Mittwoch 31.01. 09:45 - 11:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

In this course we will study mathematical objects which can be defined by finitely many data and which have a strong geometric flavor. Whereas the first instance allows for explicit computations and constructions, the second serves as a guideline for designing proofs, as we can use our geometric intuition and perception. As such, the theory is very concrete (though often highly non-trivial). In addition, the problems we study pop up frequently in other circumstances, e.g., algebra, combinatorics, number theory or even analysis. As for the concepts and topics we will look at, we will choose an attractive selection out of the following list:

Lattices and lattice points, Pick's theorem about the number of lattice points in planar polygons; Pommersheim's theorem about the number of lattice points in tetrahedra; Ehrhart's polynomial about the dilatation of polytopes and the lattice points count; the LLL-algorithm.

Polytopes, slicing and decomposition, Hilbert's third problem and Dehn's solution using the Dehn-invariant.

Convex and non-convex polyhedra, rigidity and flexibility, Cauchy's theorem computing the surface area of a polytope via projections on hyperplanes; the flexidron of Connelly.

Brion's theorem about the generating function of polyhedra.

The Euler formula for polytopes: number of faces minus number of edges plus number of vertices; the Euler characteristic of triangulated objects; the f- and h-vectors counting these numbers; the upper bound conjecture and its proof using commutative algebra.

Simplicial complexes, singular homology, homological algebra.

Convex geometry, Helly's theorem on the intersection of convex sets; mixed volumes; Hadwiger's theorems; the theorem of Bernstein-Koushnirenko about the number of solutions of polynomial equations using convex geometry; Minkowski's and isoperimetric inequalities, the theorem of Steiner-Minkowski about epsilon neighborhoods of polytopes, Rothe's theorem about non-convex polygons; regular and archimedian solids, Schläfli-symbols.

Billiards and their trajectories, sphere packings.

Cristallographic groups; tilings and wallpaper groups.

Lattice walks and generating functions.

Toric geometry, monomially generated algebras and binomials ideals.

Knot theory, invariants of knots, Reidemeister moves, higher dimensional knots.

Phylogenetic trees and their five characterizations.

Sperner's Lemma to prove Brouwer's fix point theorem.

Schubert-calculus and enumerative geometry.

Note: We recommend to interested students the complementary course "Convex Analysis" by Radu Bot, focussing more on the analytic side of convexity.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Oral exam.

Mindestanforderungen und Beurteilungsmaßstab

Prüfungsstoff

Literatur


Zuordnung im Vorlesungsverzeichnis

MALV; MGEV

Letzte Änderung: Do 07.09.2023 12:07