250179 PS Introductory seminar on Axiomatic set theory 1 (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 07.02.2022 00:00 bis Mo 21.02.2022 23:59
- Abmeldung bis Do 31.03.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 07.03. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 14.03. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 21.03. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 28.03. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 04.04. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 25.04. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 02.05. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 09.05. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 16.05. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 23.05. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 30.05. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 13.06. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 20.06. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
- Montag 27.06. 13:15 - 14:45 Seminarraum 10, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This is the seminar accompanying the lecture course, Introduction to Axiomatic Set Theory. We will follow the topics covered in the lectures, these including : Gödel's constructible universe, Martin's axioms, infinitary combinatorics, the method of forcing. As a particular application of some of these topics we will establish the independence of the Continuum Hypothesis from the usual (Zermelo Fraenkel) axioms of set theory.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Students will be expected to attend lectures, and each week a list of exercises pertaining to material covered in the lecture will be posted. Prior to the seminar session students will be asked to indicate which problems they solved/would be willing to present. During the session students will then present their solutions.
Mindestanforderungen und Beurteilungsmaßstab
Active participation in the problem sessions.
Prüfungsstoff
The material covered in the lectures.
Literatur
1) Lecture notes of the course.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
2) T. Jech, "Set theory", The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. xiv+769 pp.
3) L. Halbeisen, "Combinatorial se theory. With a gentle introduction to forcing". Springer Monographs in Mathematics. Springer, London, 2012. xvi+453 pp.
4) K. Kunen "Set theory", Studies in Logic (London), 34. College Publications, London, 2011, viii+401 pp.
Zuordnung im Vorlesungsverzeichnis
MLOM
Letzte Änderung: So 06.03.2022 12:09