250189 VO Advanced Probability Theory (2023S)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
- Donnerstag 29.06.2023 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Donnerstag 28.09.2023
- Freitag 13.10.2023 15:00 - 16:30 Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 01.12.2023 15:00 - 16:30 Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
- Freitag 26.01.2024 15:00 - 16:30 Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
- Dienstag 12.03.2024 15:00 - 16:30 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 02.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Montag 06.03. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Donnerstag 09.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Donnerstag 16.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Montag 20.03. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Donnerstag 23.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Montag 27.03. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Donnerstag 30.03. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Montag 17.04. 11:30 - 13:00 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Donnerstag 20.04. 09:45 - 11:15 Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Montag 24.04. 11:30 - 13:00 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 27.04. 09:45 - 11:15 Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 04.05. 09:45 - 11:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 08.05. 11:30 - 13:00 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 11.05. 09:45 - 11:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 15.05. 11:30 - 13:00 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 22.05. 11:30 - 13:00 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 25.05. 09:45 - 11:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 01.06. 09:45 - 11:15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 05.06. 11:30 - 13:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 12.06. 11:30 - 13:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 15.06. 09:45 - 11:15 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 19.06. 11:30 - 13:00 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
- Donnerstag 22.06. 09:45 - 11:15 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock
- Montag 26.06. 11:30 - 13:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The course is assessed based on performance in a written exam at the end of the course or after the course. Oral exams may be organized for those who wish to retake the exam.
Mindestanforderungen und Beurteilungsmaßstab
To pass the course, the student is required to gain a basic understanding of measure-theoretic probability and to be able to tackle simple common applications of the theory. For a high grade, a good command of the more advanced topics and an ability to apply them in various examples is required. For grade 4, around 50% of the maximum points of the exam will be required.There are no formal prerequisites for this course. However, some basic measure theory (eg. some of the core contents in the course "Measure and integration theory"), as well as its prerequisites, are necessary to understand the contents of this course. These prerequisites will be quickly reviewed at the beginning of the course, and a student not familiar with measure theory is advised to invest a fair amount of time to study these along the course. Basic skills in probability calculus are very useful, although not formally required.
Prüfungsstoff
The exam is based on the lecture material of the course. Knowing percolation theory is not formally required in the exam, but many tools involved in it and belonging to the core course material may be asked. Solving exercise problems and participating in the Introductory Seminar (i.e. the exercise class) is very helpful for preparing for the exam.
Literatur
There will be lecture notes, which will be updated along the lectures. Some potentially useful references and materials for further study are the following.Books:
- P. Billingsley: Probability and measure ( https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf )
- R. Durrett: Probability: theory and examples ( https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf )
- D. Williams: Probability with martingales
- G. Grimmett and D. Stirzaker: Probability and Random ProcessesLecture notes:
- G. Miermont: Advanced probability ( http://perso.ens-lyon.fr/gregory.miermont/AdPr2006.pdf )
- K. Izyurov: Probability theory ( https://wiki.helsinki.fi/display/mathphys/Izyurov?preview=/123044553/213983389/Notes_28.11.pdf )
- P. Billingsley: Probability and measure ( https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf )
- R. Durrett: Probability: theory and examples ( https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf )
- D. Williams: Probability with martingales
- G. Grimmett and D. Stirzaker: Probability and Random ProcessesLecture notes:
- G. Miermont: Advanced probability ( http://perso.ens-lyon.fr/gregory.miermont/AdPr2006.pdf )
- K. Izyurov: Probability theory ( https://wiki.helsinki.fi/display/mathphys/Izyurov?preview=/123044553/213983389/Notes_28.11.pdf )
Zuordnung im Vorlesungsverzeichnis
MSTW
Letzte Änderung: Mi 06.03.2024 12:26
- definition of probability space and basic notions of measure-theoretic probability
- random variables, expectation, independence
- Borel-Cantelli lemmas, Kolmogorov zero-one law
- law of large numbers
- notions of convergence, such as convergence in probability and weak convergence
- central limit theorem
- conditional expectations
- martingales
- optional stoppingThe method of the course is following the lectures and taking a final exam. Attendance in the lectures is strongly recommended since they include all the exam contents as well as enable mutual interaction to provide better understanding. In addition, it is strongly recommended to solve exercise problems and participate in the exercise classes, which comprise the course "Introductory Seminar on Advanced Probability Theory" ( https://ufind.univie.ac.at/en/course.html?lv=250185&semester=2023S ). The exercises are evaluated separately as part of the "Introductory Seminar" and do not contribute to the grade of this lecture course.