Universität Wien

260008 VO Advanced Statistical Physics and Soft Matter Physics (2020W)

6.00 ECTS (4.00 SWS), SPL 26 - Physik

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 12.10. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 13.10. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 19.10. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 20.10. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 27.10. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 03.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 09.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 10.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 16.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 17.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 23.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 24.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 30.11. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 01.12. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 07.12. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 14.12. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 15.12. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 11.01. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 12.01. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Montag 18.01. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
  • Dienstag 19.01. 09:00 - 10:30 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This is a graduate-level course on phase transitions and critical phenomena. The main focus is on universality, critical exponents and the renormalization group, one of the major achievements of modern Physics, with applications in many areas ranging from particle physics to statistical mechanics, soft matter, condensed matter physics and hydrodynamics. Our emphasis is on statistical physics of condensed matter, covering the following topics.

1. Thermodynamic potentials and statistical ensembles
2. Models and symmetries
3. Mean field- and Landau-theory; phase transitions
4. Classification of critical points; universality classes
5. Scaling theory and Landau-Ginzburg theory
6. Introduction to the Renormalization Group (RG): Hamiltonian flow and fixed points; relevant and irrelevant operators
7. RG and critical exponents; universality explained
8. Real-space RG: decimation and majority rule
9. Momentum-space RG: the Gaussian- and Wilson-Fisher fixed points
10. 2d-systems with continuous symmetry: topological defects and the Berezinskii-Kosterlitz-Thouless transition

Art der Leistungskontrolle und erlaubte Hilfsmittel

Written, open-book exam in class. The purpose of the course is to make you able to solve physical problems associated with the structural and phase behavior of model systems. At this level, it would be preferable to have a take-home exam for a period of one week or 10 days but this is not allowed by law. Therefore, we will have the exam in a traditional way in class. You will be given a set of problems to solve but you will be allowed to use any book, lecture notes, paper or material you deem appropriate.

Mindestanforderungen und Beurteilungsmaßstab

50% of the total points at the final exam

Prüfungsstoff

The Course forms a single entity with the associated exercise class 260009 PUE, which is listed separately for technical reasons only. The exercises are an integral part of the Course, because what we show in class will be worked upon and truly learned by individual and independent work on the homework sets of 260009 PUE. There will be one problem set distributed per week.

If you attend the class, read the literature and do the homework problems, you will have commanded sufficient knowledge of the exam contents, implying that you will then be able to confront and solve physical problems at the level of those given at the homework assignments.

Please visit the first class (October 12, 9:00 am at the Josef-Stefan Lecture Hall) for clarifications on the organizational details of the Class and the Exercises.

Literatur

Christos N. Likos, Lecture Notes on Advanced Statistical Physics -- manuscript set at disposal at the Moodle website of the Course.

Nigel Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, 1992)

Daniel J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, 1998)

Kerson Huang, Statistical Mechanics (Wiley, 1987)

Michel Le Bellac, Quantum and Statistical Field Theory (Oxford, 1991)

David Chandler, Introduction to Modern Statistical Mechanics (Oxford, 1987)

Julia M. Yeomans, Statistical Mechanics of Phase Transitions (Oxford, 1992)

Richard P. Feynman, Statistical Mechanics (Addison-Wesley, 1972)

Shang-Keng Ma, Modern Theory of Critical Phenomena (Addison-Wesley, 1982)

J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, The Theory of Critical Phenomena (Oxford, 1992)

David C. Venerus and Hans Christian Öttinger, A Modern Course in Transport Phenomena (Cambridge, 2018)

Michael E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70, 653 (1998)

Zuordnung im Vorlesungsverzeichnis

M-CORE 6, M-VAF A 1, MaG 4, MaG 10, MaG 14, UF MA PHYS 01a, UF MA PHYS 01b

Letzte Änderung: Fr 12.05.2023 00:21