Universität Wien

260014 VO Colloidal Soft Matter (2023S)

5.00 ECTS (3.00 SWS), SPL 26 - Physik

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 06.03. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 20.03. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 27.03. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 17.04. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 24.04. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 08.05. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 15.05. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 22.05. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 05.06. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 12.06. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien
  • Montag 19.06. 08:30 - 11:00 Kleiner Seminarraum, Zi.3510, Boltzmanngasse 5, 5. Stk., 1090 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The course aims at providing advanced Master’s students, PhD students or interested postdoctoral researchers with a thorough exposure in the basic experimental and theoretical concepts of the Physics associated with the structure and dynamics of colloids and colloidal systems. On the theory side, emphasis will be put on models of macroscopic, rigid aggregates undergoing thermal fluctuations and being exposed to hydrodynamic interactions in a microscopic solvent. On the experimental side, emphasis will be put on modern techniques using cameras and image processing.

A syllabus of the Course is provided below.

Introduction to soft matter (3h)
• Definition and overview of soft systems
• Length-, time-, and energy-scales
• Overview of theoretical and experimental approaches
• Colloids as prototypical soft matter systems
• Brownian motion and diffusion: the Stokes-Einstein relation and Fick’s laws

Isolated colloidal particles (6h)
• Math preliminaries: time and ensemble averages, fluctuations, correlation functions
• Brownian motion of a free particle: the Langevin description
• Brownian motion in direct space: imaging and particle tracking; the self-van Hove function
• Brownian motion in a harmonic potential: optical tweezers; microrheology

Dilute colloids: Non-interacting particles (9h)
• Osmotic pressure; van’t Hoff’s law
• Brownian motion in the gravity field: sedimentation equilibrium, the Perrin experiment; centrifugation
• Brownian motion in direct space II: Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS)
• Brownian motion in reciprocal space: the self-intermediate scattering function; Dynamic Light Scattering (DLS); Differential Dynamic Microscopy (DDM); Forced Rayleigh Scattering (FRS)
• Static scattering from independent particles: Rayleigh, Rayleigh-Gans, Mie

Dense colloids: Interacting particles
• Colloidal interactions, equations of state, virial coefficient
• Dispersion forces, colloidal stabilization (steric)
• Spatial correlations for interacting particles: g(r) and its experimental determination
• Scattering from interacting particles; the static and dynamic structure factor
• Diffusing Wave Spectroscopy (DWS)

Hard spheres
• Structure and dynamics of hard sphere suspensions
• Crystallization: close packing, the role of entropy, Density Functional Theory (DFT)
• Vitrification: in-cage dynamics, structural relaxation, dynamical heterogeneity, Mode Coupling Theory (MCT)

Sticky spheres
• Depletion interactions
• Liquid-gas coexistence
• Gelation of sticky spheres

Charged spheres
• Debye-Hückel theory of electrostatic repulsion
• The Derjaguin, Landau, Vervey, and Overbeek (DLVO) theory of electrostatic colloidal stabilization
• Fractal aggregation and fractal gels

Soft particles
• Shape, deformability and packing

Art der Leistungskontrolle und erlaubte Hilfsmittel

Assessment will be conducted via oral examination, which allows for a comprehensive view of your knowledge/abilities and gives a unique opportunity for interaction. A list of current topics in colloidal science with literature hints will be set at disposal of the participants and during the oral exam you will choose and briefly present the key paper(s) for a topic and answer questions on the paper(s) and on the corresponding course topic. You will then be asked at least one question about at least one topic different from the chosen one.

Mindestanforderungen und Beurteilungsmaßstab

Previous knowledge of Statistical Mechanics at the T4-level is required. The final grade will be determined by considering both the breadth and depth of the individual learning process, in terms of acquired knowledge and abilities, including the clarity and content of the presentation. Critical thinking skills will be also considered.

Prüfungsstoff

Exam topics include all the topics that are treated in the lectures. The lecture notes and the key papers are made available after each lecture on the Moodle page of the course.

Literatur

R. Borsali and R. Pecora, eds. Soft matter characterization. New York: Springer, 2008.

A. Fernandez-Nieves and A.M. Alberto, and Antonio Manuel Puertas, eds. Fluids, colloids, and soft materials: an introduction to soft matter physics. New York: Wiley, 2016.

J. K. G. Dhont, An Introduction to Dynamics of Colloids, (Elsevier, 1996).

M. Doi, Soft matter physics. Oxford University Press, 2013

J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids with Applications to Soft Matter, 4th Edition (Academic Press, 2013).

J. Olafsen, ed. Experimental and Computational Techniques in Soft Condensed Matter Physics. Cambridge University Press, 2010.

W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge University Press, 1989).

M. Rubinstein and R. Colby, Polymer Physics (Oxford University Press , 2003)

D. C. Venerus and H. C. Öttinger, A Modern Course in Transport Phenomena (Cambridge University Press, 2018).

T.A. Witten and P.A. Pincus, Structured Fluids: Polymers, Colloids, Surfactants, (Oxford University Press, 2010)

Zuordnung im Vorlesungsverzeichnis

M-VAF A 2, M-VAF B, PM-SPEC

Letzte Änderung: Fr 28.07.2023 09:07