Universität Wien

260052 VU Engineered quantum many-body systems (2022S)

5.00 ECTS (3.00 SWS), SPL 26 - Physik
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Donnerstag 10.03. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 17.03. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 24.03. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 31.03. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 07.04. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 28.04. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 05.05. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 12.05. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 19.05. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 02.06. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 09.06. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
Donnerstag 23.06. 10:00 - 12:30 Kurt-Gödel-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

What is a quantum simulator and what is it good for? How can we build amplifiers that are as good as quantum mechanics allows for? How can we exploit topology for robust qubits or directional amplification? What are quantum phases and non-equilibrium phase transitions?

This is a rather practically-minded course on advanced topics in theoretical quantum many-body physics with a focus on synthetic quantum systems. We will touch on topics of current research and get acquainted with methods to treat the interplay of interactions, topology, and disorder as well as their control by means of driving, dissipation, and feedback.

By the end of the course, you will have a first understanding of some of the questions in quantum science and technology, the language to describe, and the tools to address them.

Planned topics include elements of quantum dynamics (adiabatic evolution, Landau-Zener transitions, Berry phase), second quantization (bosons and fermions, Bogoliubov theory, Kitaev chain), open quantum systems (Lindblad equation), topology (Su-Schrieffer-Heeger model), phase transitions (Bose-Hubbard model, Dicke model, and discrete time crystals).

The course format will combine lecture units and exercises.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

Solid knowledge of (advanced) quantum mechanics. Knowledge of quantum condensed matter physics and of Theory in Quantum optics and Quantum information is useful, but will not be necessary.

Passing and grade will be based on (i) regular attendance, (ii) presentation of at least one exercise problem, and (iii) active participation.

Prüfungsstoff

Literatur

will be provided in the lectures.

Zuordnung im Vorlesungsverzeichnis

M-VAF A 2, M-VAF B

Letzte Änderung: Do 03.03.2022 15:29