Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
260061 VO Tensor network methods in many-body physics (2023S)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
- Freitag 30.06.2023 09:00 - 18:00 Ort in u:find Details
- Donnerstag 07.09.2023 09:00 - 18:00 Ort in u:find Details
- Montag 02.10.2023 09:00 - 18:00 Ort in u:find Details
- Montag 04.12.2023 09:00 - 18:00 Ort in u:find Details
- Montag 29.01.2024 09:00 - 18:00 Ort in u:find Details
- Montag 04.03.2024 09:00 - 18:00 Ort in u:find Details
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 09.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 10.03. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 16.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 17.03. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 23.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 24.03. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 30.03. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 31.03. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 20.04. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 21.04. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 27.04. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 28.04. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 04.05. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 05.05. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 11.05. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 12.05. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Freitag 19.05. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 25.05. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 26.05. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 01.06. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 02.06. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Freitag 09.06. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 15.06. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 16.06. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
- Donnerstag 22.06. 14:45 - 16:15 Ludwig-Boltzmann-Hörsaal, Boltzmanngasse 5, EG, 1090 Wien
- Freitag 23.06. 09:00 - 10:30 Erwin-Schrödinger-Hörsaal, Boltzmanngasse 5, 5. Stk., 1090 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Tensor networks are a powerful framework for the study of many body-systems. Most importantly, they form the right language to study quantum many-body systems, both analytically and numerically. This in particular includes systems which exhibit exotic types of order (so-called "topological order"), which cannot be described by the standard framework of symmetry breaking and local order parameters, as well as other types of systems where quantum correlations play an important role.The key reason for their success is that tensor networks are precisely built to capture the complex entanglement (i.e., the quantum correlation) which govern the behavior of such quantum many-body systems. On the one hand, this makes tensor networks a powerful analytical tool to understand and characterize the different unconventional phases and to build exactly solvable models. On the other hand, it also makes them a powerful ansatz for the numerical simulation of complex quantum many-body problems which are not susceptible to other methods due to their intricate quantum correlations.Beyond that, tensor networks also naturally appear in the description of problems in classical statistical mechanics, where they give rise to extremely accurate numerical methods, as well as e.g. in the modeling of high-dimensional data.This lecture will provide a comprehensive introduction to tensor networks, with a focus on their use in modeling quantum many-body systems.The lecture consists of two parts, which are given in the first and second half of the term, respectively.The first part of the lecture will give a comprehensive introduction to the field of tensor networks. This will include an introduction to the key concepts, as well as the basics of both the analytical and the numerical use of tensor networks. The first part will consists of 4h lecture per week, i.e. both Thursday and Friday, and last for the first half of the semester (until early May).For the second part of the lecture, there will be two tracks. It will be possible to either choose one track, or to take both tracks (see below). Each track will consists of 2h lecture per week, starting in the middle of the semester.Track A: "Mathematical theory of tensor networks". This part will specialize on mathematical aspects of tensor networks. This in particular covers the use of tensor networks in the classification of exotic phases with topological order, and their representation theory. The topics in this specialization will be mostly algebraic.Track B: "Numerical simulations with tensor networks". This part will give an detailed introduction to the different use of tensor networks for the numerical simulations of quantum many-body systems, as well as problems in statistical mechanics, in one, two and three dimensions. This track will in particular also include hands-on programming exercises.Track A will be held in the Friday slot, and Track B will be held in the Thursday slot, starting at the middle of the semester. Students who attend one of the tracks will earn ECTS points for this course. Students who wish to attend both tracks will additionally earn ECTS points for the course https://ufind.univie.ac.at/de/course.html?lv=250148&semester=2023S The first part of the lecture will be taught by Norbert Schuch (Faculty of Physics and Faculty of Mathematics). Track A will be taught by Jose Garre Rubio and Andras Molnar (both Faculty of Mathematics), and Track B will be taught by Bram Vanhecke (Faculty of Physics).For further information, see the lecture's website at https://schuch.univie.ac.at/nschuch/tensornetworks-ss23/
Art der Leistungskontrolle und erlaubte Hilfsmittel
The exam will be conducted as an oral exam of 30 minutes. The exam will cover the material taught in the first part of the course, together with the material taught either in specialization Track A or Track B. Students who wish to take both tracks will be examined on both tracks (exam time 40 minutes), and additionally earn ECTS points for course 250148 "Mathematical Aspects of Tensor Networks in Many-Body Physics".Important: Beyond the exam dates indicated in u:find, there is also the possibility to make individual appointments for exams. It is recommended that students interested in taking the exam contact Prof. Schuch (norbert.schuch@univie.ac.at) prior to registering for the exam to discuss the date and time of the exam.
Mindestanforderungen und Beurteilungsmaßstab
Students must demonstrate knowledge of the topics covered in the first part of the lecture, as well as in the chosen specialization Track A or Track B. The exam will both includes questions testing the knowledge of the material, and its application to concrete examples, such as the properties of specific tensor network models.
Prüfungsstoff
The exam will cover the entire material taught in the course, as published on the course website. Alternatively, the material covered in the reading list can be examined.
Literatur
For the first part of the lecture: https://arxiv.org/abs/1603.03039
For Track A: https://arxiv.org/abs/2011.12127
For Track B: https://arxiv.org/abs/1611.08519
For Track A: https://arxiv.org/abs/2011.12127
For Track B: https://arxiv.org/abs/1611.08519
Zuordnung im Vorlesungsverzeichnis
M-VAF A 2, M-VAF B, MFE, PM-SPEC
Letzte Änderung: Di 30.01.2024 13:46