Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

260070 VU Entanglement in quantum many-body systems (2021S)

5.00 ECTS (3.00 SWS), SPL 26 - Physik
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Online via zoom until further notice. Zoom link via moodle or upon request.

Further information on the lecture can also be found on https://schuch.univie.ac.at/ss21-qmb .

  • Montag 08.03. 10:30 - 13:00 Digital
  • Montag 15.03. 10:30 - 13:00 Digital
  • Montag 22.03. 10:30 - 13:00 Digital
  • Montag 12.04. 10:30 - 13:00 Digital
  • Montag 19.04. 10:30 - 13:00 Digital
  • Montag 26.04. 10:30 - 13:00 Digital
  • Montag 03.05. 10:30 - 13:00 Digital
  • Montag 10.05. 10:30 - 13:00 Digital
  • Montag 17.05. 10:30 - 13:00 Digital
  • Montag 31.05. 10:30 - 13:00 Digital
  • Montag 07.06. 10:30 - 13:00 Digital
  • Montag 14.06. 10:30 - 13:00 Digital
  • Montag 21.06. 10:30 - 13:00 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Correlated quantum many-body systems are systems composed of many particles (such as materials) where at low temperatures, complex quantum correlations ("entanglement") between the individual constituents play a central role. These quantum correlations can give rise to rather unconventional physical effects, such as in the Fractional Quantum Hall Effect, which exhibits precisely quantized edge currents and whose excitations carry charges which are e.g. "one third of an electron" and which possess exotic statistics, being neither bosons nor fermions.

This lecture will present a systematic introduction to correlated quantum many-body systems from the perspective of their quantum correlations: entanglement. We will study the structure of the complex entanglement in these systems and see that it naturally gives rise to an efficient description of these systems in terms of so-called Tensor Networks. The core of the lecture will then be devoted to a comprehensive introduction into the area of Tensor Networks: On the one hand, we will study analytical properties of Tensor Networks, in particular Matrix Product States (MPS), and see how they allow to understand the structure of quantum many-body states and to classify the different quantum phases they can exhibit. On the other hand, the lecture will also cover the use of Tensor Networks for the construction of powerful numerical simulation algorithms, most prominently the Density Matrix Renormalization Group (DMRG) method. Finally, the lecture will also touch upon the connections between quantum many-body systems and quantum computation.

The lecture will combine both mathematical and physical aspects of quantum many-body systems and tensor networks, and cover analytical as well as numerical methods and approaches.

Planned topics include:
* Quantum many-body systems and quantum spin systems
* Basics of entanglement theory
* The entanglement area law
* Matrix Product States and their properties
* Parent Hamiltonians and the Affleck-Kennedy-Lieb-Tasaki (AKLT) model
* Classification of phases in one dimension
* The Density Matrix Renormalization Group (DMRG) and other numerical methods
* Projected Entangled Pair States (PEPS)
* Topological order
* Measurement-based quantum computations
* Classical and quantum complexity of many-body systems
* Fermions

The course format will combine lecture units and exercises.

Prerequisites:
Solid knowledge of quantum mechanics, including the basics of quantum spins, is required. (Alternatively, solid knowledge of the basics of quantum information is also sufficient; however, in that case, please let me know beforehand.) Knowledge of quantum condensed matter is useful, but will not be necessary.

Further information on the lecture can also be found on https://schuch.univie.ac.at/ss21-qmb/ .

Art der Leistungskontrolle und erlaubte Hilfsmittel

Passing and grade will be based on (i) regular presence, (ii) presentation of at least one exercise problem, and (iii) active participation.

Mindestanforderungen und Beurteilungsmaßstab

Correctness and quality of the exercise problem presentation.

Prüfungsstoff

Literatur

See https://schuch.univie.ac.at/ss21-qmb for further information.

Zuordnung im Vorlesungsverzeichnis

M-VAF A 2, M-VAF B, MFE

Letzte Änderung: Fr 12.05.2023 00:21