260072 VU Data Science for Physicists (2020S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 03.02.2020 08:00 bis Mo 24.02.2020 07:00
- Abmeldung bis Do 30.04.2020 23:59
Details
max. 75 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
es werden dazu 2 Übungsgruppen angeboten:
Fr 10:15-11:15 Uhr, Kurt-Gödel-HS
Fr 11:30-12:30 Uhr, Kurt-Gödel-HS
Bei der Vorbesprechung wird die Gruppeneinteilung vorgenommen.
- Donnerstag 19.03. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien (Vorbesprechung)
- Donnerstag 26.03. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 02.04. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 23.04. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 30.04. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 07.05. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 14.05. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 28.05. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 04.06. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 18.06. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
- Donnerstag 25.06. 09:15 - 10:30 Christian-Doppler-Hörsaal, Boltzmanngasse 5, 3. Stk., 1090 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
The course focuses on the application of Data Science methods in Physics, that is the combination of interdisciplinary activities (such as scientific, statistical and computational tools) required to elaborate data-centred analysis on relevant physical quantities. Data Science is a topic of increasing interest in the scientific community, due to the growing power of modern computational machines and the associated creation of large databases: The valuable information stored in such large databases can be extracted by Data Science methods, i.e., by combining statistics with advanced computational methods, including machine learning, eventually.This course aims to guide students through the basic theoretical concepts regarding Data Science in Physics, and to provide them with the ability to successfully face practical applications in this field. Specifically, the lectures cover the following topics: (i) collection and manipulation of data via computational tools (mostly in python environments), (ii) effective visualization of relevant information extracted from data, (iii) scientific analysis and physical interpretation of data, (iv) advanced computational techniques, such as machine learning.The course is structured in theoretical lectures (on Thursdays), followed by practical lectures (on Fridays).
Art der Leistungskontrolle und erlaubte Hilfsmittel
The evaluation of the students takes place continuously, during the practical lectures (on Fridays).
Mindestanforderungen und Beurteilungsmaßstab
The assessment consists in:
- solving successfully the exercises assigned weekly during the practical lectures;
- public presentation of the results during the practical lectures.
- regular attendance at lectures
- solving successfully the exercises assigned weekly during the practical lectures;
- public presentation of the results during the practical lectures.
- regular attendance at lectures
Prüfungsstoff
At the end of the course, the students are expected to be familiar with the topic discussed during lectures and to be able to collect data from unstructured sources, to store and efficiently manipulate data, to visually represent the relevant information, to perform rigorous physical interpretation, to reproduce simple machine learning models.
Literatur
S. L. Brunton, and J. N. Kutz, Cambridge University Press (2019), DOI:10.1017/9781108380690
https://doi.org/10.1017/9781108380690P. Mehta, et al., Physics Reports 810, 1-124 (2019), DOI:10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1017/9781108380690P. Mehta, et al., Physics Reports 810, 1-124 (2019), DOI:10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
Zuordnung im Vorlesungsverzeichnis
DSC
Letzte Änderung: Mo 07.09.2020 15:21