Universität Wien FIND

260078 SE Device-independent Physics (2019S)

5.00 ECTS (2.00 SWS), SPL 26 - Physik
Prüfungsimmanente Lehrveranstaltung


Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").


max. 15 Teilnehmer*innen
Sprache: Englisch



Vorbesprechung: 07.03.19, 14:00 Uhr, IQOQI SR Raum

Do 14:00-15:30, IQOQI SR Raum


Ziele, Inhalte und Methode der Lehrveranstaltung

When physicists do not trust the calibration of the devices composing an experimental setup, they can opt to model the whole experiment via a black box, where one inputs a symbol (the type of experiment) and returns an output (the outcome of the experiment). Remarkably, in some situations, the mere correlations between different laboratories (or boxes) allow one to learn something meaningful about the contents of each box. E.g.: assuming that the system inside the box is quantum, correlations between different boxes are enough to lower bound the Hilbert space dimension of the underlying quantum state. Morever, since different physical theories predict different possible correlations between distant observers, some of such “device-independent” experiments can reveal the nature of the system within the black box. In this course we will learn what makes correlations physical (classical, quantum or otherwise) and how different assumptions on the underlying experimental setups translate at the level of correlations.

Art der Leistungskontrolle und erlaubte Hilfsmittel

oral presentations

Mindestanforderungen und Beurteilungsmaßstab

Linear algebra and quantum physics.


1. Classical boxes

a) Bell’s theorem. Characterization of Bell nonlocality.

b) Hidden variable models with secret communication.

c) Boxes in large symmetric systems

2. Quantum boxes

a) The limits of quantum correlations: Tsirelson’s bound. XOR games.

b) Finite dimensions are not enough: non-closure of the set of quantum boxes.

c) Characterization of quantum boxes

d) Lower bounding the Hilbert space dimension with correlations

e) Self-testing: quantum systems which verify themselves

3. Classifying general physical theories by their correlations

a) Physical sets of correlations. Closure under wirings: definition, properties, examples. Monotones under wirings.

b) Do we expect correlations to be very different from quantum? Five device-independent physical principles to constrain physical correlations: no-trivial communication complexity, no-advantage for nonlocal computation, information causality, macroscopic locality and local orthogonality.

c) The limitations of black box physics: the almost-quantum set of correlations

4. Boxes and time

a) Prepare-and-measure scenarios

b) Finite-state automata


Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, Stephanie Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

Nicolas Brunner, Stefano Pironio, Antonio Acin, Nicolas Gisin, Andre Allan Methot, Valerio Scarani, Testing the Hilbert space dimension, Phys. Rev. Lett. 100, 210503 (2008).

Ben Lang, Tamas Vertesi, Miguel Navascues, Closed sets of correlations: answers from the zoo, Journal of Physics A 47, 424029 (2014).

Miguel Navascues, Tamas Vertesi, Bounding the set of finite dimensional quantum correlations, Phys. Rev. Lett. 115, 020501 (2015).

Jean-Daniel Bancal, Stefano Pironio, Antonio Acin, Yeong-Cherng Liang, Valerio Scarani, Nicolas Gisin, Quantum nonlocality based on finite-speed causal influences leads to superluminal signaling, Nature Physics 8, 867 (2012).

Jordi Tura, Gemma De las Cuevas, Remigiusz Augusiak, Maciej Lewenstein, Antonio Acín, J. Ignacio Cirac, Energy as a detector of nonlocality of many-body spin systems, Phys. Rev. X 7, 021005 (2017).

Miguel Navascués, Yelena Guryanova, Matty J. Hoban, Antonio Acín, Almost quantum correlations, Nature Communications 6, 6288 (2015).

G. Brassard, H. Buhrman, N. Linden, A. A. Methot, A. Tapp and F. Unger, F., Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial, Phys. Rev.
Lett., 96 250401, (2006).

N. Linden, S. Popescu, A. J. Short, and A. Winter, Quantum Nonlocality and Beyond: Limits from Nonlocal Computation, Phys. Rev. Lett. 99, 180502 (2007).

M. Pawlowski, T. Paterek, D. Kaszlikowski, V. Scarani, A. Winter, and M. Zukowski, Information Causality as a physical principle, Nature 461, 1101 (2009).

M. Navascués and H. Wunderlich, A glance beyond the quantum model, Proc. Royal Soc. A 466:881-890 (2009).

T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A. Leverrier and A. Acín, Local orthogonality as a multipartite principle for quantum correlations, Nature Communications 4, 2263 (2013).

Zuordnung im Vorlesungsverzeichnis

MaG 18, M-VAF A 2, M-VAF B, MaV 5

Letzte Änderung: Di 14.05.2019 13:28