260089 VU Modelling of acid-base equilibria in polymeric and colloidal systems (2024S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 05.02.2024 08:00 bis Di 27.02.2024 07:00
- Abmeldung bis Fr 22.03.2024 23:59
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 05.03. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Mittwoch 06.03. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Donnerstag 07.03. 09:45 - 11:15 Seminarraum 9, Kolingasse 14-16, OG01
- Mittwoch 13.03. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Donnerstag 14.03. 09:45 - 11:15 Seminarraum 9, Kolingasse 14-16, OG01
- Dienstag 19.03. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Mittwoch 20.03. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Donnerstag 21.03. 09:45 - 11:15 Seminarraum 9, Kolingasse 14-16, OG01
- Dienstag 09.04. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Mittwoch 10.04. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Donnerstag 11.04. 09:45 - 11:15 Seminarraum 9, Kolingasse 14-16, OG01
- Dienstag 16.04. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Mittwoch 17.04. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Donnerstag 18.04. 09:45 - 11:15 Seminarraum 9, Kolingasse 14-16, OG01
- Dienstag 23.04. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Mittwoch 24.04. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
- Dienstag 30.04. 09:45 - 13:00 Seminarraum 9, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Evaluation will be conducted through a dual approach consisting of weekly assignments based on hands-on sessions, handed in the form of reports, complemented by a final examination.
Mindestanforderungen und Beurteilungsmaßstab
Upon completion of both the regular assignments and the final examination, students have the opportunity to earn up to 100 points. There is a maximum of 20 points for a written report from each hands-on exercise + 20 additional points for final examination which will entail discussion of the concepts introduced during course, focusing on those employed in the hands-on sessions. A minimum score of 50 points is required to pass the course. The grading scale is delineated as follows:- 50 points or above: Grade 4
- 70 points or above: Grade 3
- 90 points or above: Grade 2
- points or above: Grade 1
- 70 points or above: Grade 3
- 90 points or above: Grade 2
- points or above: Grade 1
Prüfungsstoff
The examination will encompass the subject matter addressed throughout the duration of the course.
Literatur
General Statistical thermodynamics and theory of electrolyte solutions:
D. A. McQuarrie, Statistical Mechanics, Harper Collins, New York, 1976.
Chemical thermodynamics and reaction equilibria:
P. Atkins and J. De Paula, Physical Chemistry, Oxford University Press 8th edition (2002) or later editionsSimulation methods:
D. Frenkel and B. Smit, Understanding Molecular Simula-
tion: From Algorithms to Applications, Academic Press, 2001Simulations of reaction equilibria and acid-base reactions:
J. Landsgesell et al: Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter 2019, 15, 1155−1185.
J. Landsgesell et al: Grand-Reaction Method for Simulations of Ionization Equilibria
Coupled to Ion Partitioning, Macromolecules 2020, 53, 3007−3020
D. A. McQuarrie, Statistical Mechanics, Harper Collins, New York, 1976.
Chemical thermodynamics and reaction equilibria:
P. Atkins and J. De Paula, Physical Chemistry, Oxford University Press 8th edition (2002) or later editionsSimulation methods:
D. Frenkel and B. Smit, Understanding Molecular Simula-
tion: From Algorithms to Applications, Academic Press, 2001Simulations of reaction equilibria and acid-base reactions:
J. Landsgesell et al: Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter 2019, 15, 1155−1185.
J. Landsgesell et al: Grand-Reaction Method for Simulations of Ionization Equilibria
Coupled to Ion Partitioning, Macromolecules 2020, 53, 3007−3020
Zuordnung im Vorlesungsverzeichnis
M-ERG
Letzte Änderung: Di 22.10.2024 13:46
- Review of the basics of molecular simulations - Molecular Dynamics and Monte Carlo
- Statistical mechanics of simple fluids - overview of concepts required to complete the first hands-on task: ideal gas equation of state, corrections for non-ideality, virial expansion, pair correlation function, phase diagram of a Lennard-Jones fluid, theorem of corresponding states and reduced units
- Statistical analysis of correlated time series - estimation of statistical error of the simulation results, determining the optimum sampling rate and length of the simulation run- Review of basic Chemical Thermodynamics, focusing on theoretical description of chemical reaction equilibria,
- Overview of statistical ensembles for simulating chemical reactions and their typical use cases: grand canonical ensemble, Reaction Ensemble, constant-pH ensemble, Grand-reaction ensemble- Acid-base equilibria and pH
- Properties of dilute electrolyte solutions - primitive model of electrolytes, Debye-Hückel theory, Poisson-Boltzmann equation, electrostatic contribution to excess chemical potential, effect of ionic strength on the acid-base equilibrium of simple acids and bases, effect of ionic strength on the acid-base equilibrium of simple acids and bases, activity coefficients, effect of ionic strength on the acid-base equilibrium of simple acids and bases
- Overview of simulation algorithms for charged systems - Ewald summation, etc.
- Acid-base properties of polyelectrolytes and charged colloidsThe hands-on sessions include
1. Simulation of a lennard-jones fluid - a toy problem to familiarize the students with basic simulation workflow, data analysis including error estimation, p(V) isotherm, interpretation of the results and comparison with theory - ideal gas and Van der Waals at various densities and temperatures;
2. RxMC simulation of a reactive mixture of gases - effect of intermolecular interactions on equilibrium composition, estimation of activity coefficients from simulation and from the second virial coefficient.
3. Grand-canonical simulation of a salt solution - in this problem the students learn how to compute the chemical potentials and activity coefficients in electrolyte solutions, comparison of computed activity coefficients with DH theory
4. Constant-pH simulation - acid-base properties + theory - monomeric acid in salt solution, oligomeric acid or base, represented as a charged rod or a flexible polymerThe hands-on sessions are based on scripts written in python3. To successfully complete the tasks, some experience in programming and python is necessary.Specific Recommended starting knowledge (prerequisites):
- Knowledge of Physics and Mathematics corresponding to the standard Bachelor courses
- Basics of Statistical Mechanics (Thermodynamics) and molecular simulations (Molecular Dynamics and Monte Carlo)
- Basics of Chemistry, pH, acids and bases
- Basics of programming (experience in python is advantageous but not required)