Universität Wien

267009 SE Darstellungen im Physikunterricht (2023W)

4.00 ECTS (2.00 SWS), SPL 26 - Physik
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 16 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

SR 5, Porzellangasse 4, 3. Stock

Donnerstag 02.11. 09:00 - 12:00 Ort in u:find Details
Donnerstag 02.11. 12:30 - 15:30 Ort in u:find Details
Samstag 18.11. 09:00 - 12:00 Ort in u:find Details
Samstag 18.11. 12:30 - 15:30 Ort in u:find Details
Mittwoch 03.01. 09:00 - 12:00 Ort in u:find Details
Mittwoch 03.01. 12:30 - 15:30 Ort in u:find Details

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Course objectives:
- To learn about different learning theories that address the use of semiotic representations in physics learning.
- To design an active learning activity focused on learning a physical concept using semiotic representations.
- To implement and evaluate the learning activity in a real classroom setting.

Course contents:
- Learning theories about representational use in physics education.
- Capstone project: Designing an active learning activity for teaching a physical concept using semiotic representations.
- Evaluation of learning activities (qualitative or quantitatively)

Course method: Research-based learning

Art der Leistungskontrolle und erlaubte Hilfsmittel

The evaluation of the course will comprise:

Individual:
- Coursework: Identification of learning theories on semiotic representations for physics education.

In teams:
- Capstone project, part 1: Progress report on literature review and problem identification
- Capstone project, part 2: Progress report on learning activity design
- Capstone project, part 3: Progress report on implementation and evaluation of the learning activity.
- Capstone project, final report: Final oral presentation and written report (literature review, problem identification, learning activity design, implementation and evaluation, analysis of the results and key takeaways).

Mindestanforderungen und Beurteilungsmaßstab

Each student must submit all the evaluation materials to receive a positive assessment.

Grading strategy:
Coursework: 10%
Capstone project, part 1: 20%
Capstone project, part 2: 20%
Capstone project, part 3: 30%
Capstone project, final report: 20%

Grading scale:
Very good (1): >90%
Good (2): >80%
Satisfactory (3): >70%
Sufficient (4): >60%
Insufficient (5): <60%

Prüfungsstoff

Coursework: students need to learn about semiotic representations and the learning theories that link the use of representations with learning physical concepts,
Capstone project, part 1: Progress report on literature review and problem identification
Capstone project, part 2: Progress report on learning activity design
Capstone project, part 3: Progress report on implementation and evaluation of the learning activity.
Capstone project, final report: Final oral presentation and written report (literature review, problem identification, learning activity design, implementation and evaluation, analysis of the results and key takeaways).

Literatur

Reading suggestions:

Svensson, K., & Campos, E. (2022). Comparison of two semiotic perspectives: How do students use representations in physics?. Physical Review Physics Education Research, 18(2), 020120.

R. Duval, A cognitive analysis of problems of comprehension in a learning of mathematics, Educ. Studies Math. 61, 103 (2006).

K. Svensson and U. Eriksson, Concept of a transductive link, Phys. Rev. Phys. Educ. Res. 16, 026101 (2020).

K. Svensson, J. Lundqvist, E. Campos, and U. Eriksson, Active and passive transductions—definitions and implications for learning, Eur. J. Phys. 43, 025705 (2022).

P. B. Kohl and N. D. Finkelstein, Patterns of multiple representation use by experts and novices during physics problem solving, Phys. Rev. ST Phys. Educ. Res. 4, 010111 (2008).

M. D. Cock, Representation use and strategy choice in physics problem solving, Phys. Rev. ST Phys. Educ. Res. 8, 020117 (2012).

K. Svensson, U. Eriksson, and A.-M. Pendrill, Programming and its affordances for physics education: A social semiotic and variation theory approach to learning physics, Phys. Rev. Phys. Educ. Res. 16, 010127 (2020).

J. Airey and C. Linder, A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes, J. Res. Sci. Teach. 46, 27 (2009).

V. Prain and R. Tytler, Learning through constructing representations in science: A framework of representational construction affordances, Int. J. Sci. Educ. 34, 2751 (2012).

Zuordnung im Vorlesungsverzeichnis

UF MA PHYS 02a, UF MA PHYS 02b

Letzte Änderung: Mo 30.10.2023 16:28