270051 VO+UE Simulation von Chemischer Dynamik (2020W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Di 01.09.2020 08:00 bis Fr 25.09.2020 23:59
- Abmeldung bis Fr 25.09.2020 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Deutsch, Englisch
Lehrende
Termine
First meeting:
Thursday, 1.10.2020, 14:00-17:00
Thursday, 14:00-17:00All classes will be held online (including the lecture and exercises).
Further instructions can be found in Moodle.
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The final grade will be composed of one written exam (40%), three exercise protocols (15% each), and class participation (15%).
Mindestanforderungen und Beurteilungsmaßstab
100-87.5 Grade 1 "Sehr gut" ("excellent")
87.0-75.0 Grade 2 "Gut" ("good")
74.5-62.5 Grade 3 "Befriedigend" ("satisfactory")
62.0-50.0 Grade 4 "Genügend" ("sufficient")
49.5-0.0 Grade 5 "Nicht genügend" ("failed")
87.0-75.0 Grade 2 "Gut" ("good")
74.5-62.5 Grade 3 "Befriedigend" ("satisfactory")
62.0-50.0 Grade 4 "Genügend" ("sufficient")
49.5-0.0 Grade 5 "Nicht genügend" ("failed")
Prüfungsstoff
Literatur
Zuordnung im Vorlesungsverzeichnis
TC-2
Letzte Änderung: Fr 02.10.2020 16:09
Learn how to describe chemical reactions and other molecular processes with computational methods. This includes understanding the underlying physical equations, how to solve them numerically, and how the simulations can be connected to chemistry.Content:
0. Introduction to chemical dynamics
1. The Schrödinger equation and wave packets
- Time-dependent and time-independent Schrödinger equation
- Hamiltonian operator
- Wave functions
2. Description of wave functions, special wave packets, and time evolution
- How can we represent wave functions?
- Solving the Schrödinger equation for simple cases
- Connection classical and quantum mechanics
- How to evolve wave functions in time numerically
3. The Schrödinger equation for molecules
- Born-Oppenheimer approximation
- Potential energy surfaces
- Excited states and nonadiabatic dynamics
4. Photophysics and photochemistry
- What can happen after a molecule absorbs light?
- Mathematical description of light
5. Dynamics in high-dimensional systems
- Exponential computer cost of quantum mechanics
- Classical molecular dynamics
- Methods for nonadiabatic dynamics
6. Classical molecular dynamics with molecular mechanics force fields
- Statistical description of thermal reactions
- Force fields
- Simulations in solution including temperature and pressureMethods:
Online lectures and remote computer exercises.
The classes will be organized primarily through Moodle.