Universität Wien FIND

Auf Grund der COVID-19 Pandemie kann es bei Lehrveranstaltungen und Prüfungen auch kurzfristig zu Änderungen kommen. Informieren Sie sich laufend in u:find und checken Sie regelmäßig Ihre E-Mails.

Lesen Sie bitte die Informationen auf https://studieren.univie.ac.at/info.

Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

270188 VO+UE Supramolecular Chemistry (2020W)

2.00 ECTS (2.00 SWS), SPL 27 - Chemie
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 100 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Donnerstag 05.11. 14:00 - 15:30 Digital
Dienstag 10.11. 15:00 - 16:30 Digital
Donnerstag 12.11. 14:00 - 15:30 Digital
Donnerstag 19.11. 14:00 - 15:30 Digital
Dienstag 24.11. 15:00 - 16:30 Digital
Donnerstag 26.11. 14:00 - 15:30 Digital
Donnerstag 03.12. 14:00 - 15:30 Digital
Donnerstag 10.12. 14:00 - 15:30 Digital
Dienstag 15.12. 15:00 - 16:30 Digital
Donnerstag 17.12. 14:00 - 15:30 Digital
Donnerstag 07.01. 14:00 - 15:30 Digital
Dienstag 12.01. 15:00 - 16:30 Digital
Donnerstag 14.01. 14:00 - 15:30 Digital
Donnerstag 21.01. 14:00 - 15:30 Digital
Donnerstag 28.01. 14:00 - 15:30 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The objective of this module is to reach an understanding of the nature and magnitude of the intermolecular dynamic interactions that provide the driving force for the recognition between molecules and/or ions induced by covalent and non-covalent bonding interactions in solution, solid-state and at interfaces. The current trend in modern chemistry is to go beyond the classical molecular approach to provide a deeper understanding of molecular organization at different scales in both artificial and biological systems. We will survey the most important engineering approaches toward the preparation of complex organic matter along with the exploitation approaches for engineering technological-relevant applications. By surfing through the most important examples and the synthetic organic approaches, we will also show how programming of the molecular components one can reach higher level of complexity with such a structure/activity level of understanding to design functional organic supramolecular architectures featuring applications in organic chemistry, chemical biology, materials science and nanotechnology.
Once the basic principles have been covered, the course will move on to a discussion of principles and examples of solution, surface and solid-state self-assembled molecular species. Specifically, organic molecular receptors and metal-organic frameworks will be covered, with examples of their sensing and storage applications, before moving on to increasingly complex molecular logic-gates and molecular machines. Additionally, this course will go through the concepts of how nature exploits supramolecular chemistry to perform crucial biological events, such as nucleic acid- and protein- depending function and ion transport. For illustrative purposes, case studies will be illustrate and the students encouraged to think creatively whenever possible during the exercises sections. Usually a case-study is presented per lecture.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Written exam 60%
Coursework 40%

Mindestanforderungen und Beurteilungsmaßstab

Prüfungsstoff

Basic concepts in self-assembly and self-organization, thermodynamics and kinetics of host-guest processes along with the main characterization techniques; complexation of neutral molecules in aqueous solution and their technological applications - sensors and drug delivery; non-covalent interactions involving aromatic rings; hydrogen-, halogen- and chalcogen-bonding interactions; dynamic covalent bonds; supramolecular polymers; Template effects & molecular self-assembly approach towards nanostructures in solutions (including molecular cages) and in the solid-state; basic concepts of crystal engineering; MOFs and COFs, gas storage, separation and sensing applications; applications of molecular recognition in logic gates, including medical diagnostics, colorimetric and luminescent sensors; molecular machines, from simple catenanes and rotaxanes to more complex multi-station multi-stimuli responsive supramolecular systems; basic concepts of molecular recognition in biology, including cell architecture, biomolecular interactions, structure of essential building units, lipids, DNA/RNA, protein, sugar; natural Ion Channels, including peptide-based ion change, cation/anion complexation, cross-membrane ion channel; biotechnological applications (e.g. artificial enzyme design, live cell imaging, cellular import/drug delivery) based on the concepts of supramolecular chemistry.

Literatur

Most of the concepts in this module are covered in the primary literature and review papers that are given during the course.
Supramolecular Chemistry, J.-M. Lehn, 1995, VCH, Weinheim
Supramolecular Chemistry – Fundamentals and Applications, K. Ariga, T. Kunitake, 2006, Springer, Berlin
Supramolecular Chemistry (2nd Revised edition), J.-W. Steed, J. L. Atwood, 2009, Wiley

Zuordnung im Vorlesungsverzeichnis

OC-2

Letzte Änderung: Mi 21.10.2020 13:30