280222 VU Climate Change Impacts on Soil Organic Matter: Wildfires, Permafrost Thaw, and Advanced Techniques (2024S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 05.02.2024 00:00 bis Di 27.02.2024 23:59
- Anmeldung von Do 29.02.2024 00:00 bis Mi 06.03.2024 23:59
- Abmeldung bis So 31.03.2024 23:59
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 04.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Dienstag 04.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
- Donnerstag 06.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Donnerstag 06.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
- Dienstag 11.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Dienstag 11.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
- Donnerstag 13.06. 11:30 - 13:00 Seminarraum Geochemie 2C193 1.OG UZA II
- Donnerstag 13.06. 13:15 - 14:45 Seminarraum Geochemie 2C193 1.OG UZA II
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Based on a percent scale where 100% is the highest obtainable grade the students will be evaluated as follows: In-class participation (10%), Homework (40%), and Project presentation (50%).
Prüfungsstoff
This class will meet four times over a two-week period. Grading will be based on one assignment in which students will present a small group project orally in class and one homework.
The homework will consist of multiple questions that relate to the carbon biogeochemistry learnt in-class Students will be given one week to prepare a small group project that will focus on the impact of climate change on carbon cycling. This project will be evaluated based on an oral defense of the project.
The homework will consist of multiple questions that relate to the carbon biogeochemistry learnt in-class Students will be given one week to prepare a small group project that will focus on the impact of climate change on carbon cycling. This project will be evaluated based on an oral defense of the project.
Literatur
Recommended Literature:
Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P. S. Chapter One - Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy, Sparks, D. L. Ed.; Vol. 130; Academic Press, 2015; pp 1-140. https://doi.org/10.1016/bs.agron.2014.10.005Get rights and content
Lehmann, J., Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015). https://doi.org/10.1038/nature16069Bahureksa, W.; Tfaily, M. M.; Boiteau, R. M.; Young, R. B.; Logan, M. N.; McKenna, A. M.; Borch, T. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environ Sci Technol 2021, 55 (14), 9637-9656. https://pubs.acs.org/doi/10.1021/acs.est.1c01135AminiTabrizi, R.; Wilson, R. M.; Fudyma, J. D.; Hodgkins, S. B.; Heyman, H. M.; Rich, V. I.; Saleska, S. R.; Chanton, J. P.; Tfaily, M. M. Controls on Soil Organic Matter Degradation and Subsequent Greenhouse Gas Emissions Across a Permafrost Thaw Gradient in Northern Sweden. Frontiers in Earth Science 2020, 8, Original Research. https://www.frontiersin.org/articles/10.3389/feart.2020.557961/fullPellegrini, A.F.A., Harden, J., Georgiou, K. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022). https://doi.org/10.1038/s41561-021-00867-1Bahureksa, W.; Young, R. B.; McKenna, A. M.; Chen, H.; Thorn, K. A.; Rosario-Ortiz, F. L.; Borch, T. Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environ Sci Technol 2022, 56 (7), 4597-4609. DOI: 10.1021/acs.est.1c06745Patzner, M. S.; Mueller, C. W.; Malusova, M.; Baur, M.; Nikeleit, V.; Scholten, T.; Hoeschen, C.; Byrne, J. M.; Borch, T.; Kappler, A.; et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat Commun 2020, 11 (1), 6329. https://doi.org/10.1038/s41467-020-20102-6Patzner, M. S.; Logan, M.; McKenna, A. M.; Young, R. B.; Zhou, Z.; Joss, H.; Mueller, C. W.; Hoeschen, C.; Scholten, T.; Straub, D. et al. Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment 2022, 3 (1), 76. https://doi.org/10.1038/s43247-022-00407-8
Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P. S. Chapter One - Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy, Sparks, D. L. Ed.; Vol. 130; Academic Press, 2015; pp 1-140. https://doi.org/10.1016/bs.agron.2014.10.005Get rights and content
Lehmann, J., Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015). https://doi.org/10.1038/nature16069Bahureksa, W.; Tfaily, M. M.; Boiteau, R. M.; Young, R. B.; Logan, M. N.; McKenna, A. M.; Borch, T. Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environ Sci Technol 2021, 55 (14), 9637-9656. https://pubs.acs.org/doi/10.1021/acs.est.1c01135AminiTabrizi, R.; Wilson, R. M.; Fudyma, J. D.; Hodgkins, S. B.; Heyman, H. M.; Rich, V. I.; Saleska, S. R.; Chanton, J. P.; Tfaily, M. M. Controls on Soil Organic Matter Degradation and Subsequent Greenhouse Gas Emissions Across a Permafrost Thaw Gradient in Northern Sweden. Frontiers in Earth Science 2020, 8, Original Research. https://www.frontiersin.org/articles/10.3389/feart.2020.557961/fullPellegrini, A.F.A., Harden, J., Georgiou, K. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022). https://doi.org/10.1038/s41561-021-00867-1Bahureksa, W.; Young, R. B.; McKenna, A. M.; Chen, H.; Thorn, K. A.; Rosario-Ortiz, F. L.; Borch, T. Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environ Sci Technol 2022, 56 (7), 4597-4609. DOI: 10.1021/acs.est.1c06745Patzner, M. S.; Mueller, C. W.; Malusova, M.; Baur, M.; Nikeleit, V.; Scholten, T.; Hoeschen, C.; Byrne, J. M.; Borch, T.; Kappler, A.; et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat Commun 2020, 11 (1), 6329. https://doi.org/10.1038/s41467-020-20102-6Patzner, M. S.; Logan, M.; McKenna, A. M.; Young, R. B.; Zhou, Z.; Joss, H.; Mueller, C. W.; Hoeschen, C.; Scholten, T.; Straub, D. et al. Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment 2022, 3 (1), 76. https://doi.org/10.1038/s43247-022-00407-8
Zuordnung im Vorlesungsverzeichnis
MES-5
Letzte Änderung: Di 05.03.2024 10:07
Our focus will be on the biogeochemistry of soil organic matter in climate-affected ecosystems.Learning Objectives
• Students will learn fundamental principles of soil organic matter biogeochemistry such as sorption/desorption, oxidation-reduction, thermodynamics, and biodegradation.
• Students will learn effects of forest fires and permafrost thaw on soil organic matter cycling and water quality.
• Students will learn to advanced characterization techniques for soil organic matter.