Universität Wien

280423 VU Current observing trends in multivawelength astronomy (2023S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

There will be no lectures on 18.04.2023.
The exam will take place during the last lecture slot, on 27.06.2023.

  • Dienstag 07.03. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 14.03. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 21.03. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 28.03. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 18.04. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 25.04. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 02.05. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 09.05. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 16.05. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 23.05. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 06.06. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 13.06. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 20.06. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Dienstag 27.06. 15:00 - 18:15 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course offers an in-depth overview of current astrophysical research with topics ranging from Solar & stellar to extragalactic astrophysics.

Covering wavelengths from X-rays to Radio, we would focus on each band individually and explain what physical processes are responsible for the emission in different wavelength regions. Further discussions will include available instrumentation, how to observe and/or access the data, and how to extract information from it using state-of-the-art research techniques.

We will offer exercises to demonstrate the use of spectral, photometric and other data to learn more about our objects of interest. For example, detecting and characterising
an Earth-like planet around a Sun-like star is one of the big scientific goals in this century. Students will learn about the physics behind planet detection and be provided with real high-resolution spectral and photometric data to work with. They will learn how to analyse these data in order to detect a planet and determine its properties.

There will also be discussions on how to access and use archival data, the most commonly used software for the different wavelength regions, how to write observing proposals, and (if weather and instrumentation at the institute permit) some hands-on observations.

Art der Leistungskontrolle und erlaubte Hilfsmittel

The final grade will be formed based on three criteria:
1/3 Attendance (75% required to pass) + 1/3 Exercises (50% required to pass) + 1/3 Exam (50% required to pass)

Mindestanforderungen und Beurteilungsmaßstab

The course will be held in English and is aimed at higher Bachelors's and Master's students.

This course offers an in-depth overview of current astrophysical research with topics ranging from Solar and stellar to extragalactic astrophysics. Covering wavelengths from X-rays to radio, we would focus on each band individually and explain what physical processes are responsible for the emission in different wavelength regions. Further discussion will include available instrumentation, how to observe or access the data, and how to extract information from it using state-of-the-art research techniques.

For most spectral bands, there will be exercises to demonstrate the use of spectral, photometric and other data to learn more about our objects of interest. For example, detecting and characterising an Earth-like planet around a Sun-like star is one of the big scientific goals of this century. Students will learn about the physics behind planet detection (among many other topics) and be provided with real high-resolution spectra and photometric data. They will learn how to analyse these data in order to detect a planet and determine its properties.

There will also be discussions on how to access and use archival data, the most commonly used software for each spectral band, how to write observing proposals, and (if weather and instrumentation at the institute permit) some hands-on observations.

Prüfungsstoff

The final grade will be formed based on three criteria:
1/3 Attendance (75% required to pass) + 1/3 Exercises (50% required to pass) + 1/3 Exam (50% required to pass)

Literatur

Additional reading material will be provided for each wavelength region.

Zuordnung im Vorlesungsverzeichnis

PM-Nawi, PM-Astr

Letzte Änderung: Di 14.03.2023 12:09