Universität Wien

280543 VU Gravitational Lensing in the Rubin/LSST Era (2024W)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

The first lecture is on October 9th, not October 2nd.

  • Mittwoch 09.10. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 16.10. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 23.10. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 30.10. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 06.11. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 20.11. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 27.11. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 04.12. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 11.12. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 08.01. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 15.01. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 22.01. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17
  • Mittwoch 29.01. 11:30 - 13:00 Littrow-Hörsaal Astronomie Sternwarte, Türkenschanzstraße 17

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Context:

This course is offered by Prof. Graham Smith from the University of Birmingham. He will be the Ida Pfeiffer Professor, visiting the University of Vienna during the Winter Semester 2024/25.

Aims:

Gravitational lensing is a powerful and well established tool for modern astrophysics and cosmology, with gravitational magnification and the formation of multiple images of distant objects providing access to information that is not available via other probes.

This course will equip students to understand and engage with gravitational lensing science that is enabled by the Vera C. Rubin Observatory’s (Rubin’s) imminent Legacy Survey of Space and Time (LSST), and contemporaneous surveys / observing facilities.

In general, Rubin/LSST will revolutionise most aspects of astronomical research in the coming decade, and will drive significant innovation in data science and artificial intelligence. Gravitational lensing will contribute by enlarging the number of known gravitational lenses by more than two orders of magnitude. This will enable many exciting discoveries that will include gravitationally lensed galaxies, supernovae, quasars, binary compact object mergers, and potentially individual stars and exoplanets in the distant universe.

In summary, the aims of the course are:

1) to introduce students to the essential theory and phenomenology of gravitational lensing;
2) to review the state of the art in a broad range of gravitationally lensed objects in the distant universe;
3) to explore the future of gravitational lensing in the Rubin/LSST era.

The course is accessible to students with diverse backgrounds and scientific interests (from planets to cosmology). In particular, it is NOT essential to have previously studied General Relativity. Equally, whilst the essential theory will be covered (in an accessible manner), the course is not heavily mathematical. The course will emphasise phenomenology and the exciting science that can be achieved with gravitational lensing observations in the coming decade.

Content:

Part 1. Gravitational lensing theory and phenomenology: October 9, 16, 23, 30 [Lectures]

Part 2. Gravitationally lensing science applications: November 6, 13, 20, 27; December 4 [Student presentations and discussion]

Part 3. Gravitational lensing mini-projects: January 8, 15, 22, 29 [Hands on work and discussions]

Note that the focus is on strong gravitational lensing, supplemented by some content on micro-lensing. Weak-lensing will be mentioned in passing.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Part 1. Students will complete some weekly exercises, and take one written exam (December 11th).

Part 2. Each student will give a short presentation about a scientific application of gravitational lensing.

Part 3. Each students will write up their hands-on work as a short report (maximum 2000 words, i.e. a few pages).

A list of suggested topics for hands-on work will be provided before Christmas. These topics will span a broad range of interests and technical abilities. Students will also be encouraged to propose their own topic, if this list does not match their interests.

Where relevant and welcome, students will be supported to develop their reports into brief articles to be submitted to a journal (e.g. Journal of Undergraduate Research in Physics, or Research Notes of the American Astronomical Society). However, this is not a requirement of the course!

Mindestanforderungen und Beurteilungsmaßstab

The assessment will be weighted as follows:

Part 1. Weekly exercises 10%, Exam 20%
Part 2. Presentation 30%
Part 3. Contribution to discussions 10%, Final report 30%

A minimum mark of 50% is required on the exam.

Prüfungsstoff

Lecture slides, online material, and suggested reading will be provided in Moodle.

Literatur

Scott Dodelson: 'Gravitational lensing', https://doi.org/10.1017/9781316424254
Vera C. Rubin Observatory: https://rubinobservatory.org/
Additional references and papers will be provided during the lectures.

Zuordnung im Vorlesungsverzeichnis

VER; VAF; PM-Nawi; PM-Astr;

Letzte Änderung: Di 01.10.2024 17:27