Universität Wien FIND
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

290097 UE Explorative Analysis of Demographic and Health Data with DHS Data Set (2016W)

4.00 ECTS (2.00 SWS), SPL 29 - Geographie
Prüfungsimmanente Lehrveranstaltung

Details

max. 20 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Freitag 14.10. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 21.10. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 28.10. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 04.11. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 11.11. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 18.11. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 02.12. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 09.12. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 16.12. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 13.01. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 20.01. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Freitag 27.01. 08:45 - 10:15 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The ability to work with and present numerical data is often crucial in Social Sciences, both to understand the complexity of the world and communicate research findings. Today the range of techniques available to geographers gives great scope for dealing with data and exploring in a quantitative manner their research area.
In this context, secondary data [data which have already been collected and which are available for others to use] consist of a central source of information for many projects. Governments, institutions, companies have been collecting data all around the world.
This course gives the opportunity to students to learn more on how to collect, handle and use such data. With a specific focus on the DHS (Demographic and Health Surveys) programm, the students will learn to generate their own dataset and treat them with statistical software. The depth of the spatial exploratory analyses will depend on the progress of the group.
DHS are nationally- representative household surveys that provide data for a wide range of monitoring and impact evaluation indicators in the areas of population, health, and nutrition. DHS data set appears then as the core of quantitative materials to describe and assess population and health issues in over 90 developing countries.
Thus, from surveys to data, an exploration of methods to interpret, use and collect the DHS indicators and data will be given.
After completion of the course, participants would be able to build their own database from the DHS, transforming it into a spatial database and visualizing the results with tables, figures and maps.

Art der Leistungskontrolle und erlaubte Hilfsmittel

In addition of intermittent exercises (30%), a short report (~10/15pages) on a specific case study will be written, enables the students to apply concretely what they have learned and update their skills and knowledge in population geography and demography in using DHS data set. The topic and the given country(-ies) may be chosen according to the interests of the student. Working in a group (2-3 people) could be accepted. The report will keep up with the demand and the score should be the same within the group (70%).

Mindestanforderungen und Beurteilungsmaßstab

Prerequisite:
• Basic knowledge of statistics, such as frequency distribution, measure of central tendency (mean, median and mode) and measure of statistical dispersion (variance and standard variation).
• Basic knowledge of SPSS or another statistical software would be an asset

Prüfungsstoff

Active participation to the classroom practice
Writing a short report

Literatur

Reading such as handbooks or online tutorials will be announced in the course.

Zuordnung im Vorlesungsverzeichnis

(MG-S4-PI.m) (MG-W5-PI) (MR1-a-PI) (L2-FW) (D5)

Letzte Änderung: Fr 31.08.2018 08:56