Universität Wien FIND
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

290137 VU Statistische Datenanalyse mit R (2018S)

5.00 ECTS (2.00 SWS), SPL 29 - Geographie
Prüfungsimmanente Lehrveranstaltung

Details

max. 30 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Achtung: Die LV findet regulär bis 17:45 Uhr statt, die anschließende Zeit ist für das Tutorium vorgesehen.

Donnerstag 08.03. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 15.03. 16:15 - 18:45 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 22.03. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 12.04. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 19.04. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 26.04. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 03.05. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 17.05. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 24.05. 16:15 - 18:45 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 07.06. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 14.06. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 21.06. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33
Donnerstag 28.06. 16:15 - 18:30 Class Room 4 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-33

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Lehrveranstaltung steht auf zwei Grundpfeilern:
1. Vertiefung und Erweiterung statistischer Methoden in der physischen Geographie
2. Erlernen der Umsetzung mit R
Ein wichtiges Augenmerk wird auf die Verbindung dieser beiden Teile gelegt, d.h. die Studenten sollen die Theorie statistischer Methoden verstehen und diese auch in konkrete Analyseschritte im R umsetzen können. Daher wird im ersten Drittel der Übung der Schwerpunkt auf dem Umgang mit der Software liegen und sukzessive mit statistischen Anwendungen erweitert werden. Im zweiten Drittel der Übung werden die in der VU „Einführung in die Statistik“ gelernten Methoden wiederholt und die Umsetzung mittels R gelernt. Aufbauend darauf, wird die Anwendung von häufig in der Physiogeographie verwendeten bi- und multivariaten Methoden anhand konkreter Beispiele aus der Forschung vertieft, sowie der grundlegende Umgang mit Raster- und Vektordaten in R erlernt werden. Daraus ergeben sich folgende Ziele:
Die Studierenden:
- Können sich einen Überblick über jeden beliebigen Datensatz in R verschaffen
- Verstehen die Programmumgebung und können selbstständig nach passenden R-Funktionen, Paketen und deren Beschreibung suchen
- Sind in der Lage; Datensätze mittels deskriptiver Statistiken zusammenzufassen und in Tabellen, Diagrammen und Graphiken (in R) aufzubereiten
- Sind in der Lage, große Datensätze mithilfe von R-Skripten effektiv zu analysieren
- Können die wichtigsten statistischen Funktionen in R anwenden und auch eigene Funktionen programmieren
- können uni,- bi- und multivariate Analysen in R durchführen und die Ergebnisse evaluieren
- können passende Testverfahren für die Überprüfung von Hypothesen auswählen und durchführen
- können die Ergebnisse richtig interpretieren und sprachlich verständlich zusammenfassen

Einzelne Einheiten bestehen jeweils aus:
~ 5 Min. - Besprechung aufgetretener Fragen und Probleme der Vorwoche
~ 40 Min – Vorlesung
~45 Min – Umsetzung des in der Vorlesung behandelten Themas in R
Der Inhalt der Vorlesung wird als Skript (ppt-Folien) auf moodle zur Verfügung gestellt. Benötigte Datensätze und Information stehen ebenfalls auf moodle zur Verfügung.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Anwesenheit und Mitarbeit (20%)
Übungsarbeiten (30%)
Abschlussprüfung (50 %) MC-Fragen plus offene Fragen

Mindestanforderungen und Beurteilungsmaßstab

Die Benotung basiert auf der Vergabe von Punkten. Maximal sind 100 Punkte erreichbar.
Für eine positive Benotung sind folgende Mindestanforderungen zu erfüllen:
- laufende Anwesenheit: (max. 4 SWS Fehleinheiten)
- Abgabe von 5 individuellen Übungsaufgaben
- Minimum von 55 Punkten auf die Lehrveranstaltung, davon:
o Minimum von 25 Punkten auf die Abschlussprüfung (max. 50 Pkt.)
o Minimum von 15 Punkten auf die Übungsarbeiten

Benotungsschlüssel:

>= 85 Punkte: sehr gut
75 < 85 Punkte: gut
65 < 75 Punkte: befriedigend
55 < 65 Punkte: genügend
< 55 Punkte: nicht genügend

Prüfungsstoff

Der Inhalt der Abschlussprüfung umfasst theoretische und methodische Grundlagen sowie die Interpretation von Ergebnissen.

Literatur

Zimmermann-Janschitz S. (2014): Statistik in der Geographie. Eine Exkursion durch die deskriptive Statistik.

Schönwiese C.-D. (2000): Praktische Statistik für Meteorologen und Geowissenschaftler, 3. Auflage, Gebrüder Bornträger, Berlin-Stuttgart

W. N. Venables, D. M. Smith and the R Core Team (2017): Introduction to R, https://cran.r-project.org/

Zuordnung im Vorlesungsverzeichnis

(BA GG 5.2) (UF MA GW 02) (B11-6.5)

Letzte Änderung: Fr 31.08.2018 08:43