290137 VU Statistical Data Analysis with Focus on Spatial Statistics (2021W)
Prüfungsimmanente Lehrveranstaltung
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Di 07.09.2021 11:00 bis Di 21.09.2021 11:00
- Anmeldung von Do 23.09.2021 11:00 bis Di 28.09.2021 11:00
- Abmeldung bis So 31.10.2021 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine
Time: Wednesdays at 13:30-15:00 starting 06.10.2021
Room on-site: MM-Lab, NIG, Stiege III, 1. Stock, C110
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The assessment is conducted via three testing elements (T1-3). The first is an assignment that requires the application of two examination topics on a new and independently chosen dataset. It is assessed via a reproducibility file and an oral presentation. The second, a peer review, involves the evaluation of the presentation and reproducibility files of examination topics that were not used by a student in T1. The last one evaluates a student’s participation and contribution during in-class activities.The weights of each element are:
- Individual assignment 55% (T1)
- Peer review assignment 35% (T2)
- Contribution 10% (T3)
- Individual assignment 55% (T1)
- Peer review assignment 35% (T2)
- Contribution 10% (T3)
Mindestanforderungen und Beurteilungsmaßstab
A student shall attend at least 75% of the sessions.
T1 is an obligatory test to pass the course.
T2 and T3 are not obligatory tests to pass the course.
The maximum scoring points that can be achieved for T1 is 55.
The maximum scoring points that can be achieved for T2 is 35.
T1 is an obligatory test to pass the course.
T2 and T3 are not obligatory tests to pass the course.
The maximum scoring points that can be achieved for T1 is 55.
The maximum scoring points that can be achieved for T2 is 35.
Prüfungsstoff
• Statistical data analysis
• Spatial statistical analysis
• Spatial autocorrelation & clustering
• Correlation & GWR
*The examination topics cover the entire content of the course and its learning outcomes.
• Spatial statistical analysis
• Spatial autocorrelation & clustering
• Correlation & GWR
*The examination topics cover the entire content of the course and its learning outcomes.
Literatur
-- Bluman, A. G. (2009). Elementary statistics: A step by step approach. New York. McGraw-Hill Higher Education.
-- Brunsdon, C., Fotheringham, S., & Charlton, M. (1998).
-- Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 431-443.
-- Fischer, M. M., & Getis, A. (Eds.). (2010). Handbook of applied spatial analysis: software tools, methods and applications (pp. 599-628). Berlin: springer.
-- Haining, R. P., & Haining, R. (2003). Spatial data analysis: theory and practice. Cambridge university press.
-- Lee, J., & Wong, D. W. (2001). Statistical analysis with ArcView GIS. John Wiley & Sons.
-- Brunsdon, C., Fotheringham, S., & Charlton, M. (1998).
-- Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 431-443.
-- Fischer, M. M., & Getis, A. (Eds.). (2010). Handbook of applied spatial analysis: software tools, methods and applications (pp. 599-628). Berlin: springer.
-- Haining, R. P., & Haining, R. (2003). Spatial data analysis: theory and practice. Cambridge university press.
-- Lee, J., & Wong, D. W. (2001). Statistical analysis with ArcView GIS. John Wiley & Sons.
Zuordnung im Vorlesungsverzeichnis
(BA GG 5.2)
Letzte Änderung: Fr 01.10.2021 16:10
Knowledge of GIS software (e.g., ArcGIS – elementary level) is a prerequisite for this course.ArcGIS software for students: https://zid.univie.ac.at/en/software-for-students/