Universität Wien

300132 SE Grundlagen und aktuelle Entwicklungen in der Evolutionstheorie (2020W)

3.00 ECTS (2.00 SWS), SPL 30 - Biologie
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine

Aufgrund der momentanen COVID-19 Situation wird der Kurs digital stattfinden. Die Veranstaltung findet jeweils Montags um 14h statt. Die Vorbesprechung dazu ist am 5. 10. um 14h. Mehr Information über die digitale Platform folgt.


Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Wir werden uns dieses Semester mit dem Problem der Zelltypen beschäftigen und dazu die rezente Literatur zum Thema lesen und diskutieren.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

Presentation

Prüfungsstoff

Literatur

LITERATURE

Introduction: Problem of delineation (Species, (Traits,) Cell types)
P. Griffith, Squaring the Circle: Natural Kinds with Historical Essences. In: Robert A. Wilson 1999, Species : New Interdisciplinary Essays, A Bradford Book, Cambridge, Mass.
R. Boyd, Homeostasis, Species and Higher Taxa. In: Robert A. Wilson 1999, Species : New Interdisciplinary Essays, A Bradford Book, Cambridge, Mass.
M. K. Vickaryous, B. K. Hall, Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 81, 425-455 (2006).

Cell types: What are they?
O. Hobert, Regulatory logic of neuronal diversity: terminal selector genes and selector motifs. Proc Natl Acad Sci U S A 105, 20067-20071 (2008).
D. Arendt, The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9, 868-882 (2008).
O. Hobert, Terminal Selectors of Neuronal Identity. Curr Top Dev Biol 116, 455-475 (2016).
O. Hobert, L. Glenwinkel, J. White, Revisiting Neuronal Cell Type Classification in Caenorhabditis elegans. Curr Biol 26, R1197-R1203 (2016).
D. Arendt et al., The origin and evolution of cell types. Nat Rev Genet 17, 744-757 (2016).

Cell Types examples:
P. R. Steinmetz et al., Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487, 231-234 (2012).
S. M. Jahnel, M. Walzl, U. Technau, Development and epithelial organisation of muscle cells in the sea anemone Nematostella vectensis. Front Zool 11, 44 (2014).
O. A. Tarazona, L. A. Slota, D. H. Lopez, G. Zhang, M. J. Cohn, The genetic program for cartilage development has deep homology within Bilateria. Nature 533, 86-89 (2016).

One potential Mechanism for Cell type evolutionary origination: Stress
R. E. Michod, Y. Viossat, C. A. Solari, M. Hurand, A. M. Nedelcu, Life-history evolution and the origin of multicellularity. J Theor Biol 239, 257-272 (2006).
T. H. Oakley, D. I. Speiser, How Complexity Originates: The Evolution of Animal Eyes. Annu. Rev. Ecol. Evol. Syst. 46, 237-260 (2015).
E. M. Erkenbrack et al., The mammalian decidual cell evolved from a cellular stress response. PLoS Biol 16, e2005594 (2018).
G. P. Wagner, E. M. Erkenbrack, A. C. Love, Stress-Induced Evolutionary Innovation: A Mechanism for the Origin of Cell Types. Bioessays 41, e1800188 (2019).
A. M. Nedelcu, R. E. Michod, Stress Responses Co-Opted for Specialized Cell Types During the Early Evolution of Multicellularity: The Role of Stress in the Evolution of Cell Types Can Be Traced Back to the Early Evolution of Multicellularity. Bioessays 42, e2000029 (2020).

Zuordnung im Vorlesungsverzeichnis

PhD, MAN 3, M-WZB, MZO W-4

Letzte Änderung: Di 24.11.2020 13:49