300343 VO Genome structure and evolution (2012W)
Labels
Vorbesprechung: 04.10.2012 11:00 (Übungsraum 3; Fakultätszentrum für Biodiversität; Rennweg 1.OG]
Details
Sprache: Englisch
Prüfungstermine
- Donnerstag 29.11.2012
- Dienstag 18.12.2012
- Donnerstag 10.01.2013
- Mittwoch 30.01.2013
- Donnerstag 28.02.2013
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 04.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 11.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 18.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 25.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 08.11. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 15.11. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 22.11. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 29.11. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 06.12. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 13.12. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 10.01. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 17.01. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 24.01. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 31.01. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This course offers an overview of plant genome structure and evolution. Plan genome structure (types of coding and non-coding DNA sequences that contribute to the genome function and evolution; mechanisms of their change) as well as main chromosomal structures (telomeres, centromeres, NORs) will be discussed. All these features will be compared with genomic features and evolutionary trends of other organisms (animals, including humans, insects etc.). The newest methods recently developed to analyze genome composition and function including methods to characterize the coding and repetitive DNA fractions (e.g., high-throughput sequencing) will also be introduced. The course will also introduce types and consequences of various types of genomic changes including polyploidy and more subtle chromosomal rearrangements as well as dynamics of mobile genetic elements genome, and discuss these in the context of (comparative) genome evolution. The course will also offer a few hours of practical chromosome handling: analyses of meiotic chromosome pairing and karyotypic landmarks (including localization of various types of DNA sequences in the chromosomes by FISH; demonstration).
Art der Leistungskontrolle und erlaubte Hilfsmittel
written exam
Mindestanforderungen und Beurteilungsmaßstab
To present and discuss in details the structure, types, and function of chromosomes, discuss genome structure and emphasize their role in evolutionary processes.
To introduce most important cytogenetic and genomic tools including state of the art next generation sequencing, and demonstrate how they can be used to infer genome evolution in comparative context in plants.
To introduce most important cytogenetic and genomic tools including state of the art next generation sequencing, and demonstrate how they can be used to infer genome evolution in comparative context in plants.
Prüfungsstoff
Literatur
Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London.
2. Fukui K. & Nakamya S. 1996. Plant chromosomes. Laboratory methods. CRC Press, Boca Raton.
3. Maluszynska J. (ed.) 1998. Plant cytogenetics. Silesian University Press, Katowice, Poland.
4. Schwarzacher T. & Heslop-Harrison P. 2000. Practical in situ hybridization. 2nd ed. BIOS, Oxford UK.
5. Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York, USA.
6. Singh R.J. 2003. Plant cytogenetics. CRC Press, Boca Raton.
7. Puertas M.J. & Naranjo T. (eds.) 2005. Plant cytogenetics. Karger, Basel.
8. Puertas M.J. & Naranjo T. (eds.) 2008. Reviews in plant cytogenetics. Karger, Basel.
9. Birchler J.A. & Pires J.C. (eds.) 2010. Advances in plant cytogenetics. Karger, Basel.
10. Plant Genome Diversity vol. 1 (2012) and 2 (in press). Springer
2. Fukui K. & Nakamya S. 1996. Plant chromosomes. Laboratory methods. CRC Press, Boca Raton.
3. Maluszynska J. (ed.) 1998. Plant cytogenetics. Silesian University Press, Katowice, Poland.
4. Schwarzacher T. & Heslop-Harrison P. 2000. Practical in situ hybridization. 2nd ed. BIOS, Oxford UK.
5. Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York, USA.
6. Singh R.J. 2003. Plant cytogenetics. CRC Press, Boca Raton.
7. Puertas M.J. & Naranjo T. (eds.) 2005. Plant cytogenetics. Karger, Basel.
8. Puertas M.J. & Naranjo T. (eds.) 2008. Reviews in plant cytogenetics. Karger, Basel.
9. Birchler J.A. & Pires J.C. (eds.) 2010. Advances in plant cytogenetics. Karger, Basel.
10. Plant Genome Diversity vol. 1 (2012) and 2 (in press). Springer
Zuordnung im Vorlesungsverzeichnis
B-BPF 2
Letzte Änderung: Mo 07.09.2020 15:43