300343 VO Genome structure and evolution (2018W)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
- Donnerstag 29.11.2018 11:00 - 12:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 13.12.2018 11:00 - 12:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 24.01.2019 11:00 - 12:00 Hörsaal (Fakultätszentrum für Biodiversität) Rennweg EG
- Donnerstag 14.03.2019 13:00 - 14:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Vorbesprechung: 04.10.2018.
Lectures will be blocked: 2 hours per week (Thursdays 11:00-13:00) for six weeks. The course will finish with written exam.
- Donnerstag 04.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 11.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 18.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 25.10. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 08.11. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 15.11. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
- Donnerstag 22.11. 11:00 - 13:00 Übungsraum 3 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This course offers an overview of plant genome structure and evolution. Plant genome structure (types of coding and non-coding DNA sequences that contribute to the genome function and evolution; mechanisms of their change) as well as main chromosomal landmarks (telomeres, centromeres, NORs) will be discussed. All these features will be compared with genomic features and evolutionary trends of other organisms (animals, including humans, insects etc.). The newest methods recently developed to analyze genome composition and function including methods to characterize the coding and repetitive DNA fractions (e.g., high-throughput sequencing) will also be introduced. The course will also introduce types and consequences of various genomic changes including polyploidy and more subtle chromosomal rearrangements as well as dynamics of mobile genetic elements in the genome, and discuss these in the comparative phylogenetic context. The course also offers a few hours of practical chromosome handling (microscopy): analyses of meiotic chromosome pairing and karyotypic landmarks (including localization of various types of DNA sequences in the chromosomes by FISH - demonstration).
Art der Leistungskontrolle und erlaubte Hilfsmittel
written exam (100%) from course material; Mindestanforderungen für positive Beurteilung: min. 50% of points
Mindestanforderungen und Beurteilungsmaßstab
To present and discuss in details the structure, types, and function of chromosomes, discuss genome structure and emphasize their role in evolutionary processes.
To introduce most important cytogenetic and genomic tools including state of the art next generation sequencing, and demonstrate how they can be used to infer genome evolution in comparative context in plants.
To introduce most important cytogenetic and genomic tools including state of the art next generation sequencing, and demonstrate how they can be used to infer genome evolution in comparative context in plants.
Prüfungsstoff
Lectures (material on moodle)
Literatur
Stebbins G.L. 1971. Chromosomal evolution in higher plants. Edward Arnold, London.
2. Fukui K. & Nakamya S. 1996. Plant chromosomes. Laboratory methods. CRC Press, Boca Raton.
3. Maluszynska J. (ed.) 1998. Plant cytogenetics. Silesian University Press, Katowice, Poland.
4. Schwarzacher T. & Heslop-Harrison P. 2000. Practical in situ hybridization. 2nd ed. BIOS, Oxford UK.
5. Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York, USA.
6. Singh R.J. 2003. Plant cytogenetics. CRC Press, Boca Raton.
7. Puertas M.J. & Naranjo T. (eds.) 2005. Plant cytogenetics. Karger, Basel.
8. Puertas M.J. & Naranjo T. (eds.) 2008. Reviews in plant cytogenetics. Karger, Basel.
9. Birchler J.A. & Pires J.C. (eds.) 2010. Advances in plant cytogenetics. Karger, Basel.
10. Plant Genome Diversity vol. 1 (2012) and 2 (2013). Springer
2. Fukui K. & Nakamya S. 1996. Plant chromosomes. Laboratory methods. CRC Press, Boca Raton.
3. Maluszynska J. (ed.) 1998. Plant cytogenetics. Silesian University Press, Katowice, Poland.
4. Schwarzacher T. & Heslop-Harrison P. 2000. Practical in situ hybridization. 2nd ed. BIOS, Oxford UK.
5. Levin D.A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York, USA.
6. Singh R.J. 2003. Plant cytogenetics. CRC Press, Boca Raton.
7. Puertas M.J. & Naranjo T. (eds.) 2005. Plant cytogenetics. Karger, Basel.
8. Puertas M.J. & Naranjo T. (eds.) 2008. Reviews in plant cytogenetics. Karger, Basel.
9. Birchler J.A. & Pires J.C. (eds.) 2010. Advances in plant cytogenetics. Karger, Basel.
10. Plant Genome Diversity vol. 1 (2012) and 2 (2013). Springer
Zuordnung im Vorlesungsverzeichnis
BBO 2, BAN 6, BMG 10, BMB 10, BOE 11, BPB 11, BZO 11, UF BU 10,
Letzte Änderung: Mo 07.09.2020 15:43