Universität Wien FIND
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

300627 SE Plant Genome Evolution: Repetitive DNA (2016S)

2.00 ECTS (1.00 SWS), SPL 30 - Biologie
Prüfungsimmanente Lehrveranstaltung

Details

max. 10 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Donnerstag 03.03. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 10.03. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 17.03. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 07.04. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 14.04. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 21.04. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 28.04. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 12.05. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Mittwoch 18.05. 12:00 - 16:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG
Donnerstag 19.05. 12:00 - 14:00 Übungsraum 2 (Fakultätszentrum für Biodiversität) Rennweg 1.OG
Donnerstag 09.06. 12:00 - 17:00 Seminarraum (Fakultätszentrum für Biodiversität) Rennweg EG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course offers the students the possibility to get acquainted with modern literature and recent views on repetitive DNA (tandemly repeated and dispersed including mobile genetic elements) which constitute large fractions of plant genomes. The selected papers will focus on types of repetitive DNA abundance, variation, hypotheses on their origin, factors stimulating their activity in the genome, mechanisms which enable their successful amplification, existence, and evolution in the genome. Furthermore, their impact on genome restructuring on all levels of organization and evolution will be discussed as well as their role in the genome (selfish junk DNA vs. useful collaborator). Students will be able to understand and appreciate different aspects of evolution and role of repetitive DNA in shaping plant genomes, especially in the forthcoming era of genomics. Special emphasis will be on application of next generation sequencing to analyze repetitive DNA pf complex plant genomes, both diploid and polyploid.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Individual presentation of published papers 70%
Active participation in discussions 20%
Written report (summary of presented papers and discussion) 10%
The deadline for written report is 30.05.2016

Mindestanforderungen und Beurteilungsmaßstab

To acquire following skills:
1. To be able to critically read the literature, to synthesize gained knowledge, to ask relevant questions and plan own experiments
2. To be able to analyze, document, and interpret the data in the context of other available published information.
Knowledge outcome:
1. To be able to define different types of repetitive DNA.
2. To be able to define major mechanisms by which the repeats originate, spread and evolve in the genome
3. To be able to define types and processes by which different repeat types participate in plant genome function and define what types of evolutionary changes do they influence in different plant groups (e.g., on the level of genes, chromosomes, and whole genomes)
4. To be able to understand application of next generation sequencing techniques and bioinformatic data analyses of repeats and how these contribute to elucidating the evolution of plant genomes.

Prüfungsstoff

seminar; reading and understaninding of scientific papers; papers' presentation, discussion, and critical evaluation of all scientific papers presented

Literatur

1. Volff J.-N. (ed.) 2005. Retrotransposable elements and genome evolution. Karger, Basel.
2. Ayala F.J., Fitch W.M., and Clegg M.T. (eds) 2000. Variation and evolution in plants and microorganisms: toward a new synthesis 50 years after Stebbins. National Academy of Sciences of the USA.
3. Puertas M.J. & Naranjo T. (eds.) 2005. Plant cytogenetics. Karger, Basel.
4. Birchler J. & Pires C. (eds.) 2010. Advanced in Plant Cytogenetics. Karger, Basel.
5. "Plant Genome Diversity" vol. 1 and 2, Springer 2013

Zuordnung im Vorlesungsverzeichnis

MEV W-6, MGE III-2, MBO7

Letzte Änderung: Fr 31.08.2018 08:56