323103 VU Data science approaches for advancing drug discovery - MPS5 (2018S)
Prüfungsimmanente Lehrveranstaltung
Labels
Details
Sprache: Englisch
Lehrende
Termine
The date for the first meeting (kick-off) where we discuss the schedule of the VU is available on moodle.
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Written exam at the end of the VU;
Active contribution during the Practical part
Active contribution during the Practical part
Mindestanforderungen und Beurteilungsmaßstab
Written exam at the end of the VU;
Active contribution during the Practical part;
Presence at the 8 lectures and 4 practical units;
material for further reading will be pointed to in each individual lecture
Active contribution during the Practical part;
Presence at the 8 lectures and 4 practical units;
material for further reading will be pointed to in each individual lecture
Prüfungsstoff
Content of the lectures and the material for further reading
Literatur
Distributed in the lectures
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Fr 31.08.2018 08:43
- VO 3: Statistics for data sciences: Distributions, correlations, hypothesis testing
- VO 4: Basics of statistical learning
- VO 5: Chemical Data: chemical structure representations, chemical descriptors
- VO 6: Cheminformatics approaches in drug discovery
- VO 7: Data sources, data integration: ChEMBL, OpenPHACTS
- VO 8: Database scheme/structures, Data queryingPredictive Modelling with R/KNIME (Practical part):- UE 1: QSAR and machine learning in KNIME
- UE 2: Pathway/disease analysis in KNIME
- UE 3: Applied Cheminformatics in R
- UE 4: Data analyses and data visualization in R