340373 VO Multilingual and Crosslingual Methods and Language Resources (2022W)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
max. 1000 Teilnehmer*innen
Sprache: Englisch
Prüfungstermine
- Mittwoch 25.01.2023 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 01.03.2023 18:30 - 20:00 Seminarraum 9 ZfT Philippovichgasse 11, 2.OG
- Mittwoch 26.04.2023 18:30 - 20:00 Hörsaal 4 ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 28.06.2023 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Diese Lehrveranstaltung wird in englischer Sprache am Mittwoch vom 12.10.2022 bis 25.01.2023 von 18:30 bis 20:00 Uhr im Hörsaal 3A, ZfT Gymnasiumstraße 50, 3. Stock abgehalten.
- Mittwoch 12.10. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 19.10. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 09.11. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 16.11. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 30.11. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 07.12. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 14.12. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 11.01. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
- Mittwoch 18.01. 18:30 - 20:00 Hörsaal 3A ZfT Gymnasiumstraße 50 3.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Schriftliche Abschlussprüfung und BonuspunkteBonuspunkte:
Im Lauf des Semesters werden auf Moodle zusätzliche Übungen zu den LV-Inhalten zur Verfügung gestellt, die in den jeweiligen Vorlesungen erklärt und angekündigt werden. Für diese Übungen ist es möglich Bonuspunkte zu erarbeiten, die für die schriftliche Prüfung angerechnet werden können.Kann ich durch Bonuspunkte alleine eine positive Beurteilung erwirken?
Nein, Bonuspunkte allein können keine positive Gesamtbeurteilung bewirken. Jedoch kann nach Einberechnung der Bonuspunkte eine vorher knapp negative Beurteilung auch positiv ausfallen.Benötige ich die Bonuspunkte um die volle Punktezahl der schriftlichen Prüfung erreichen zu können?
Nein, die volle Punktezahl der schriftlichen Prüfung kann ohne Bonuspunkte erreicht werden. Wenn Sie keine Bonuspunkte erarbeiten entsteht Ihnen kein Nachteil. Wenn Sie allerdings Bonuspunkte erarbeiten entsteht der Vorteil, dass sich Ihre Note um maximal einen Grad verbessern kann (z. B. wenn Sie eine solide 3 auf die Prüfung erhalten würden, könnten die Bonuspunkte Ihre Note auf eine 2 verbessern).Wo finde ich meine Bonuspunkte?
Ihre Bonuspunkte werden auf dem Moodle der LV dokumentiert.Wie lange sind diese Bonuspunkte gültig/anrechenbar auf die schriftliche Prüfung?
Bonuspunkte sind maximal bis zum Ende des Semesters, das auf die Lehrveranstaltung folgt, gültig (z. B. VO 2022W - Bonuspunkte sind gültig für alle 4 Prüfungstermine des darauffolgenden Semesters).
Im Lauf des Semesters werden auf Moodle zusätzliche Übungen zu den LV-Inhalten zur Verfügung gestellt, die in den jeweiligen Vorlesungen erklärt und angekündigt werden. Für diese Übungen ist es möglich Bonuspunkte zu erarbeiten, die für die schriftliche Prüfung angerechnet werden können.Kann ich durch Bonuspunkte alleine eine positive Beurteilung erwirken?
Nein, Bonuspunkte allein können keine positive Gesamtbeurteilung bewirken. Jedoch kann nach Einberechnung der Bonuspunkte eine vorher knapp negative Beurteilung auch positiv ausfallen.Benötige ich die Bonuspunkte um die volle Punktezahl der schriftlichen Prüfung erreichen zu können?
Nein, die volle Punktezahl der schriftlichen Prüfung kann ohne Bonuspunkte erreicht werden. Wenn Sie keine Bonuspunkte erarbeiten entsteht Ihnen kein Nachteil. Wenn Sie allerdings Bonuspunkte erarbeiten entsteht der Vorteil, dass sich Ihre Note um maximal einen Grad verbessern kann (z. B. wenn Sie eine solide 3 auf die Prüfung erhalten würden, könnten die Bonuspunkte Ihre Note auf eine 2 verbessern).Wo finde ich meine Bonuspunkte?
Ihre Bonuspunkte werden auf dem Moodle der LV dokumentiert.Wie lange sind diese Bonuspunkte gültig/anrechenbar auf die schriftliche Prüfung?
Bonuspunkte sind maximal bis zum Ende des Semesters, das auf die Lehrveranstaltung folgt, gültig (z. B. VO 2022W - Bonuspunkte sind gültig für alle 4 Prüfungstermine des darauffolgenden Semesters).
Mindestanforderungen und Beurteilungsmaßstab
Mindestanforderung: Positive Beurteilung der schriftlichen AbschlussprüfungNotenskala:
0-60% nicht genügend (5),
61-70% genügend (4),
71-80% befriedigend (3),
81-90% gut (2),
91-100% sehr gut (1).
0-60% nicht genügend (5),
61-70% genügend (4),
71-80% befriedigend (3),
81-90% gut (2),
91-100% sehr gut (1).
Prüfungsstoff
Alle in der Lehrveranstaltung (siehe Moodle) besprochenen Inhalte und Pflichtliteratur.
Literatur
Wird in der ersten LV-Einheit sowie auf Moodle bekannt gegeben.Beispielliteratur:
Ammar, W., Mulcaire, G., Tsvetkov, Y., Lample, G., Dyer, C., & Smith, N. A. (2016). Massively multilingual word embeddings. arXiv preprint arXiv:1602.01925.Bosque-Gil, J., Gracia, J., Montiel-Ponsoda, E., & Gómez-Pérez, A. (2018). Models to represent linguistic linked data. Natural Language Engineering, 24(6), 811-859.Chiarcos, C., McCrae, J., Cimiano, P., & Fellbaum, C. (2013). Towards open data for linguistics: Linguistic linked data. In New Trends of Research in Ontologies and Lexical Resources (pp. 7-25). Springer, Berlin, Heidelberg.Cimiano, P., Chiarcos, C., McCrae, J. P., & Gracia, J. (2020). Linguistic Linked Data in Digital Humanities. In Linguistic Linked Data (pp. 229-262). Springer, Cham.Forkel, R. (2014). The cross-linguistic linked data project. In 3rd Workshop on Linked Data in Linguistics: Multilingual Knowledge Resources and Natural Language Processing (p. 61).McCrae, J. P., Moran, S., Hellmann, S., & Brümmer, M. (2015). Multilingual linked data. Semantic Web, 6(4), 315-317.McCrae, J. P., Bosque-Gil, J., Gracia, J., Buitelaar, P., & Cimiano, P. (2017). The Ontolex-Lemon model: development and applications. In Proceedings of eLex 2017 conference (pp. 19-21).Ruder, S., Vulić, I., & Søgaard, A. (2019). A survey of cross-lingual word embedding models. Journal of Artificial Intelligence Research, 65, 569-631.
Ammar, W., Mulcaire, G., Tsvetkov, Y., Lample, G., Dyer, C., & Smith, N. A. (2016). Massively multilingual word embeddings. arXiv preprint arXiv:1602.01925.Bosque-Gil, J., Gracia, J., Montiel-Ponsoda, E., & Gómez-Pérez, A. (2018). Models to represent linguistic linked data. Natural Language Engineering, 24(6), 811-859.Chiarcos, C., McCrae, J., Cimiano, P., & Fellbaum, C. (2013). Towards open data for linguistics: Linguistic linked data. In New Trends of Research in Ontologies and Lexical Resources (pp. 7-25). Springer, Berlin, Heidelberg.Cimiano, P., Chiarcos, C., McCrae, J. P., & Gracia, J. (2020). Linguistic Linked Data in Digital Humanities. In Linguistic Linked Data (pp. 229-262). Springer, Cham.Forkel, R. (2014). The cross-linguistic linked data project. In 3rd Workshop on Linked Data in Linguistics: Multilingual Knowledge Resources and Natural Language Processing (p. 61).McCrae, J. P., Moran, S., Hellmann, S., & Brümmer, M. (2015). Multilingual linked data. Semantic Web, 6(4), 315-317.McCrae, J. P., Bosque-Gil, J., Gracia, J., Buitelaar, P., & Cimiano, P. (2017). The Ontolex-Lemon model: development and applications. In Proceedings of eLex 2017 conference (pp. 19-21).Ruder, S., Vulić, I., & Søgaard, A. (2019). A survey of cross-lingual word embedding models. Journal of Artificial Intelligence Research, 65, 569-631.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 06.07.2023 17:08
- Verschiedene Arten der Sprachressourcen (Terminologie, Lexikon, Kontrolliertes Vokabular, Thesaurus, etc.)
- Methoden zur Darstellung, Erstellung, Verbreitung und Verwendung von multilingualen Sprachressourcen einschließlich des Ansatzes der Linguistic Linked Open Data (LLOD) und der linguistischen Data Science im Allgemeinen
- Multilinguale und crosslinguale Methoden zur Verbesserung der Kommunikation mithilfe von Sprachressourcen und computerlinguistischen Ansätzen
- Praktische Beispiele für die genannten MethodenMethode:
- Theoretische Erarbeitung verschiedener Sprachressourcen
- Theoretische Einführung in verschiedene multilinguale und crosslinguale Methoden der Sprachtechnologie, z. B. Word Embeddings und LLOD
- Theoretische Diskussion des aktuellen Stands der Forschung
- Praktische Erarbeitung von Fallbeispielen der multilingualen und crosslingualen Ressourcen und Methoden