390013 UK VGSCO: Computational Methods in Multiobjective Optimization (2021W)
Computational Methods in Multiobjective Optimization
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 26.11.2021 08:00 bis Di 07.12.2021 23:59
- Abmeldung bis Do 09.12.2021 23:59
Details
Sprache: Englisch
Lehrende
Termine
Block, December 10-17, 2021
online
13 December, 09.45-11.15 and 11.30-13.00
14 December, 09.45-11.15 and 11.30-13.00
15 December, 09.45-11.15 and 11.30-13.00
16 December 09.45-11.15 and 11.30-13.00
17 December 09.45-11.15
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
This lecture series gives an introduction to multiobjective optimization, i.e., to optimizing multiple objective functions at the same time. First, the basic optimality notions and the needed theoretical background will be given. Then, the main focus is on numerical methods for solving such types of problems. A widely used tool are scalarization approaches as, for instance, the well-known weighted sum method. We will examine such approaches and discuss their advantages and limits. Another topic will be descent methods, for which we examine optimality conditions as stationarity. The course continuous with direct methods for solving multiobjective optimization problems and with the examination of special classes as mixed-integer nonlinear problems or robustness concepts in case of uncertain multiobjective optimization. As multiobjective optimization is a special case of vector optimization, i.e., of optimizing a vector-valued objective function, and of set-optimization, i.e. of optimizing a set-valued objective function, we will also give outlooks to these more general problem classes.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Homework
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 09.12.2021 16:49