Universität Wien

400007 SE Introduction to linear regression models (2020W)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

The first session of this class is likely to take place as planned in the PC room in Schenkenstraße. The class room is very large and provides ample space to spread out. For subsequent sessions, we will see what the situation allows. Those who prefer to take the whole class digitally for health reasons should contact me.

  • Montag 12.10. 10:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
  • Montag 19.10. 09:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
  • Montag 09.11. 09:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
  • Montag 16.11. 09:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
  • Montag 23.11. 10:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course provides a practical and applied introduction to ordinary least squares (OLS) regression models, one of the most widely-used statistical methods in the social sciences. By the end of this course, you will be able to construct and interpret OLS regression models. You will have a firm understanding of the assumptions of the model, the differences between various types of independent variables and how to identify and address possible dangers and problems. You will also be able to evaluate critically OLS models used in scholarly journals. We will begin by reviewing basic statistical concepts, such as comparing means and testing hypotheses, before moving on to the analysis of the association of two continuous variables. We then discuss simple linear regression and the assumptions underlying OLS regression. The final sessions cover the core of this method. First, we examine in detail multiple regression models, concentrating on the practical interpretation of results. Then, different types of explanatory variables are introduced, with a focus on binary/nominal variables and interaction effects. Finally, an overview of possible problems and their remedies is provided, and we will consider how to approach model-building in OLS regression.
At the end of this course you will:
- have a solid grounding in theoretical aspects of regression models,
- be able to critically evaluate regression models used in the literature,
- be able to construct and refine a regression-based study design for their own research questions, and
- be able to learn about other regression models through self-study.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

Assessment criteria:
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at five set dates (40%)
3) Continuous assessment of class participation (10%)
Students need to achieve a pass grade (4) on each of these three assessment criteria. Attendance is mandatory.

Prüfungsstoff

Literatur

Gelman, Hill and Vehtari (2020) Regression and Other Stories, Cambridge UP: Cambridge.
Dougherty, Christopher (2007) Introduction to Econometrics, 3rd edition, Oxford University Press.
Agresti, Alan and Barbara Finlay (2008) Statistical Methods for the Social Sciences, 4th edition, Pearson Education.
Kennedy,Peter (2008) A Guide to Econometrics, 6th edition, Wiley-Blackwell: Oxford.
U. Kohler and U. Kreuter (2012) Data Analysis Using Stata, Third Edition, College Station: Stata Press
Wooldridge, Jeffrey (2009) Introductory Econometrics, 3rd edition, South Western College.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Di 22.09.2020 18:50