400007 SE Introduction to linear regression models (2020W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Di 01.09.2020 09:00 bis Mi 30.09.2020 17:00
- Abmeldung bis Sa 31.10.2020 17:00
Details
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The first session of this class is likely to take place as planned in the PC room in Schenkenstraße. The class room is very large and provides ample space to spread out. For subsequent sessions, we will see what the situation allows. Those who prefer to take the whole class digitally for health reasons should contact me.
- Montag 12.10. 10:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Montag 19.10. 09:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Montag 09.11. 09:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Montag 16.11. 09:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Montag 23.11. 10:00 - 13:00 PC-Raum 1 Schenkenstraße 8-10, 1.UG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Assessment criteria:
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at five set dates (40%)
3) Continuous assessment of class participation (10%)
Students need to achieve a pass grade (4) on each of these three assessment criteria. Attendance is mandatory.
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at five set dates (40%)
3) Continuous assessment of class participation (10%)
Students need to achieve a pass grade (4) on each of these three assessment criteria. Attendance is mandatory.
Prüfungsstoff
Literatur
Gelman, Hill and Vehtari (2020) Regression and Other Stories, Cambridge UP: Cambridge.
Dougherty, Christopher (2007) Introduction to Econometrics, 3rd edition, Oxford University Press.
Agresti, Alan and Barbara Finlay (2008) Statistical Methods for the Social Sciences, 4th edition, Pearson Education.
Kennedy,Peter (2008) A Guide to Econometrics, 6th edition, Wiley-Blackwell: Oxford.
U. Kohler and U. Kreuter (2012) Data Analysis Using Stata, Third Edition, College Station: Stata Press
Wooldridge, Jeffrey (2009) Introductory Econometrics, 3rd edition, South Western College.
Dougherty, Christopher (2007) Introduction to Econometrics, 3rd edition, Oxford University Press.
Agresti, Alan and Barbara Finlay (2008) Statistical Methods for the Social Sciences, 4th edition, Pearson Education.
Kennedy,Peter (2008) A Guide to Econometrics, 6th edition, Wiley-Blackwell: Oxford.
U. Kohler and U. Kreuter (2012) Data Analysis Using Stata, Third Edition, College Station: Stata Press
Wooldridge, Jeffrey (2009) Introductory Econometrics, 3rd edition, South Western College.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Di 22.09.2020 18:50
At the end of this course you will:
- have a solid grounding in theoretical aspects of regression models,
- be able to critically evaluate regression models used in the literature,
- be able to construct and refine a regression-based study design for their own research questions, and
- be able to learn about other regression models through self-study.