Universität Wien

400013 SE Introduction to regression models (2024W)

Methodenseminar

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 04.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
  • Montag 11.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
  • Montag 18.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
  • Montag 25.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
  • Montag 02.12. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course offers a practical and applied introduction to ordinary least squares (OLS) regression models, one of the most widely-used statistical methods in the social sciences. This course will help you to construct, interpret, and critically evaluate OLS regression models. You will have a firm understanding of the assumptions of the model, the differences between various types of independent variables, and how to identify and address potential issues in regression models. You will also be able to critically evaluate OLS models used in scholarly journals.
We will begin by reviewing basic statistical concepts, such as comparing means and testing hypotheses, before moving on to the analysis of the association between two continuous variables. We will then discuss simple linear regression and the assumptions underlying OLS regression. The course will proceed to cover multiple regression models, with a focus on the practical interpretation of results. Different types of explanatory variables, including binary/nominal variables and interaction effects, will be introduced. Finally, an overview of possible problems and their remedies is provided, and we will consider how to approach model-building in OLS regression.
Throughout the course, real-world examples are used to illustrate concepts and ensure practical understanding.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Assessment and permitted materials
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at four set dates (40%)
3) Continuous assessment of class participation (10%)

Mindestanforderungen und Beurteilungsmaßstab

Students need to achieve a pass grade (4) on each of these three assessment criteria. Attendance is mandatory.

Prüfungsstoff

Literatur

Gelman, Hill and Vehtari (2020) Regression and Other Stories, Cambridge UP: Cambridge.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 02.12.2024 14:47