400013 SE Introduction to regression models (2024W)
Methodenseminar
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 02.09.2024 09:00 bis So 22.09.2024 23:59
- Abmeldung bis Do 10.10.2024 23:59
Details
max. 15 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 04.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
- Montag 11.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
- Montag 18.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
- Montag 25.11. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
- Montag 02.12. 08:00 - 13:30 Seminarraum 6, Kolingasse 14-16, EG00
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Assessment and permitted materials
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at four set dates (40%)
3) Continuous assessment of class participation (10%)
1) Problem-set paper on main concepts and interpretation of results, assigned after the last class OR 10-15 page paper using regression models on a substantive topic related to the PhD thesis (50%).
2) Homework and problem sets after each class, to be submitted at four set dates (40%)
3) Continuous assessment of class participation (10%)
Mindestanforderungen und Beurteilungsmaßstab
Students need to achieve a pass grade (4) on each of these three assessment criteria. Attendance is mandatory.
Prüfungsstoff
Literatur
Gelman, Hill and Vehtari (2020) Regression and Other Stories, Cambridge UP: Cambridge.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 02.12.2024 14:47
We will begin by reviewing basic statistical concepts, such as comparing means and testing hypotheses, before moving on to the analysis of the association between two continuous variables. We will then discuss simple linear regression and the assumptions underlying OLS regression. The course will proceed to cover multiple regression models, with a focus on the practical interpretation of results. Different types of explanatory variables, including binary/nominal variables and interaction effects, will be introduced. Finally, an overview of possible problems and their remedies is provided, and we will consider how to approach model-building in OLS regression.
Throughout the course, real-world examples are used to illustrate concepts and ensure practical understanding.