Universität Wien

400017 SE Causality in Quantitative Research (2024S)

Theorieseminar

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Freitag 01.03. 09:45 - 13:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
  • Freitag 15.03. 09:45 - 13:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
  • Freitag 12.04. 09:45 - 13:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
  • Freitag 26.04. 09:45 - 13:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
  • Freitag 24.05. 09:45 - 13:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
  • Freitag 07.06. 09:45 - 13:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01
  • Freitag 21.06. 09:45 - 13:00 Seminarraum 11 Vernetzungsraum für Vienna Doctoral School of Social Sciences, Kolingasse 14-16, OG01

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course provides an overview of how causality is conceptualized and understood in quantitative research in the social sciences, focusing on the theoretical assumptions underlying popular research designs and methods for causal inference. After a quick review of different conceptions of causality, we introduce and focus on Neyman and Rubin's "potential outcomes framework" that has achieved a dominant position of how quantitative researchers think about causality in the social sciences. We then survey five different classes of popular research designs and methods for causal inference that are based on the potential outcomes framework:

1) Matching methods
2) Instrumental variables
3) Difference-in-differences
4) Synthetic control
5) Regression discontinuity designs

These methods rely on different sets of identifying assumptions to correct for selection bias on observables and unobservables that impede causal inference. With regard to each approach covered, we will work out and discuss its theoretical foundations and assumptions, consider its practical challenges, critically discuss its application in published works as well as practice the interpretation of its results.
Some basic understanding of quantitative research methods (e.g. multiple regression analysis) is desired, but students with strong motivation may also acquire this knowledge in parallel to the course. Students should also note that the materials will involve formulas and equations.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Active participation and contribution in class (15%)
• Five critiques (approx. 150 words each) of published articles (15%)
• In-person test/exam with questions about different methods (25%)
• EITHER a Research design for a planned paper OR an Analysis report for a planned paper (45%, about 3,500 words)

Students should attend at least 80% of the sessions.

Mindestanforderungen und Beurteilungsmaßstab

Students have to pass each assessment part (see above) to obtain a positive grade for the course.

Prüfungsstoff

Topics will include materials covered in class and/or on the reading list. Some assessments may also demand students to research something themselves or collect material themselves. Research designs and Analysis reports will involve topics chosen by the students, depending on their own research interest.

Literatur

The following textbooks cover several topics of the course and can be used as reference throughout:

• Angrist, Joshua D., and Jörn-Steffen Pischke. 2008. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton: Princeton University Press.
• Cunningham, Scott. 2021. Causal Inference: The Mixtape. New Haven: Yale University Press.

Specific readings for each class will be announced at the beginning of term.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mi 31.07.2024 12:06