Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

400022 SE Causal inference (2025S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 15 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Mittwoch 14.05. 13:15 - 18:15 Seminarraum 19, Kolingasse 14-16, OG02
  • Donnerstag 15.05. 13:15 - 18:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
  • Freitag 16.05. 13:15 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
  • Freitag 23.05. 13:15 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

LECTURER: Daniel Auer
This course introduces social science PhD students to the question of causality. We will criti-
cally(!) discuss seminal, provocative, and original empirical studies on key societal questions
and get to know contemporary quantitative methods that have been introduced to allow for
causal statements. First, we establish the experimental ideal and under which conditions the
analysis of non-experimental observational data can be interpreted in a causal way. Afterwards, we will discuss different experimental and quasi-experimental approaches. During the applied sessions, we will design our own RCTs, replicate existing studies, discuss published
work, and investigate if the key assumptions for causal statements are fulfilled. These exercises will help us identify the challenges we face as researchers when advancing from correlation to
causation. By the end of this course, students will be able to:
• Understand core frameworks for causal inference and counterfactual reasoning.
• Design research to address causality in observational and experimental settings.
• Critically assess and implement statistical tools for causal inference.
• Present and defend causal statements effectively.
The course will comprise
lecture input on causality, where we learn about the theoretical concept and methodolog-
ical requirements for causal statements,
applied work, where we replicate empirical studies,
and presentations & discussions of scientific papers, focusing on design challenges.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Participants should have prior knowledge of linear regressions and be able to use statistical software (e.g. R, STATA). The software used in the course is STATA. If you have concerns about necessary prerequisites, do not hesitate to contact me in advance.
If you have an idea, a design draft, or an ongoing project that tries to establish a causal state-ment, bring it with you! (not a must

Mindestanforderungen und Beurteilungsmaßstab

Grading: pass or fail. Students must achieve >50% in all three areas.
(1) Attendance and active participation: Active participation in class is mandatory. This includes preparation, asking questions, and regular attendance.
(2) Replication & Presentation: Students will replicate an empirical study (in groups ar individually) and discuss in class its implementation of causal methods.
(3) Research pitch (23.05.) and term paper (latest hand-in: 30.06.2025): Students will present a research design and write an individual short paper (~3000 words) summarizing their
idea (incl. motivation, related literature), causal design (method, suggested data sources), and hypothesized results. Individual feedback on the paper provided upon request.

Prüfungsstoff

tba

Literatur

Course material will be available at daniel-auer.com/causal-inference (password: causality25).
Recommended readings:
• Angrist, Joshua D., and J ¨orn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s
companion. Princeton University Press, 2009.
• Cunningham, Scott. Causal Inference: The Mixtape. Yale Press, 2021
https://mixtape.scunning.com/
• Huntington-Klein, Nick. The effect: An introduction to research design and causality. Chap-
man Hall, 2021. https://theeffectbook.net

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Fr 14.02.2025 14:47