Lehrveranstaltungsprüfung
260243 VO Einführung in die Physik III (2018W)
Quanten, Atome und Kerne
Labels
WANN?
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 28.01.2019 10:45 bis Di 05.03.2019 12:00
- Abmeldung bis Di 05.03.2019 12:00
Prüfer*innen
Information
Prüfungsstoff
Atom und Quantenphysik1. Wie kann man Atome und Moleküle sichtbar machen, vermessen und wiegen?
2. Die Teilchennatur des Photons: Schwarzkörperstrahlung, Fotoeffekt, Compton-
Effekt, Masse, Impuls, Drehimpuls, Strahlungsdruck
3. Einfache Quanteninformation mit Photonen: Polarisation und QUBITS
4. Die Diskrete Natur der Atome: Atomspektren, Rydberg-Serie, Bohr-Modell,
Franck-Hertz Versuch
5. Welle-Teilchen Dualismus: de Broglie Hypothese, Elektronenbeugung, Atom
und Molekülbeugung, Materiewellen-Interferometrie, Heisenberg's Unbestimmtheitsrelation,
Grundbegriffe der Kohärenz
6. Experimentelle Motivation der Schrödinger-Gleichung und Motivation der
Wellenphänomene
7. Einfache Potentiale und experimentelle Realisierungen: Quantenpunkte,
Tunneleffekt: Skalierung, Analogie zu evaneszenten Wellen, Tunnelmikroskopie,
Harmonischer Oszillator: moderne Anwendungen
8. Das Wasserstoffatom: Motivation der n,l,m Quantenzahlen, Energiespektrum,
Zahl der Zustände, Vergleich mit Bohr, Bedeutung der Orbitale
9. Magnetismus von Atomen: Zeeman Effekt und Stern-Gerlach-Experiment,
10. Präzession im Magnetfeld, Bloch-Gleichungen, Pauli-Matrizen, Spin-Resonanz-
Experimente
11. Relativistische Erweiterung des Schrödinger-Modells: Feinstruktur und Lamb-
Shift: Idee und wie experimentell zugänglich
12. Kernspin: Hyperfeinstruktur; Relevanz für die moderne Atomphysik:
13. Schalenaufbau der Atome, Periodensystem der Elemente, Pauli Prinzip,
Aufbau-Prinzip, Hund'sche Regeln, Qualitative Verhältnisse im PSE
14. Exotische Atome: Myon, Positronium, Protonium, Antiwasserstoff
15. elementare Bindungsformen zwischen AtomenKernphysik
1. Größe, Dichte, Massen- und Ladungsverteilung des Atomkerns, Rutherfordexperiment
2. Tröpfchenmodell und Bindungsenergien
3. Fermigas und Schalen-Modell (qualitativ)
4. Zerfallsprozesse: alpha, beta, gamma,
5. Nuklidkarte, Zerfallsgesetz und Zerfallsreihen
6. Nachweismethoden fur radioaktive Strahlung
7. Neutrinos: Motivation, Eigenschaften, Moderne Experimente
8. Ww radioaktiver Strahlung mit Materie
9. Strahlenschutz im Alltag
10. Radioaktivität in Technik: Fission und Fusion in der Energiegewinnung
11. Stellare Kernprozesse
12. Anwendungen der Isotopenphysik: Datierungsverfahren
2. Die Teilchennatur des Photons: Schwarzkörperstrahlung, Fotoeffekt, Compton-
Effekt, Masse, Impuls, Drehimpuls, Strahlungsdruck
3. Einfache Quanteninformation mit Photonen: Polarisation und QUBITS
4. Die Diskrete Natur der Atome: Atomspektren, Rydberg-Serie, Bohr-Modell,
Franck-Hertz Versuch
5. Welle-Teilchen Dualismus: de Broglie Hypothese, Elektronenbeugung, Atom
und Molekülbeugung, Materiewellen-Interferometrie, Heisenberg's Unbestimmtheitsrelation,
Grundbegriffe der Kohärenz
6. Experimentelle Motivation der Schrödinger-Gleichung und Motivation der
Wellenphänomene
7. Einfache Potentiale und experimentelle Realisierungen: Quantenpunkte,
Tunneleffekt: Skalierung, Analogie zu evaneszenten Wellen, Tunnelmikroskopie,
Harmonischer Oszillator: moderne Anwendungen
8. Das Wasserstoffatom: Motivation der n,l,m Quantenzahlen, Energiespektrum,
Zahl der Zustände, Vergleich mit Bohr, Bedeutung der Orbitale
9. Magnetismus von Atomen: Zeeman Effekt und Stern-Gerlach-Experiment,
10. Präzession im Magnetfeld, Bloch-Gleichungen, Pauli-Matrizen, Spin-Resonanz-
Experimente
11. Relativistische Erweiterung des Schrödinger-Modells: Feinstruktur und Lamb-
Shift: Idee und wie experimentell zugänglich
12. Kernspin: Hyperfeinstruktur; Relevanz für die moderne Atomphysik:
13. Schalenaufbau der Atome, Periodensystem der Elemente, Pauli Prinzip,
Aufbau-Prinzip, Hund'sche Regeln, Qualitative Verhältnisse im PSE
14. Exotische Atome: Myon, Positronium, Protonium, Antiwasserstoff
15. elementare Bindungsformen zwischen AtomenKernphysik
1. Größe, Dichte, Massen- und Ladungsverteilung des Atomkerns, Rutherfordexperiment
2. Tröpfchenmodell und Bindungsenergien
3. Fermigas und Schalen-Modell (qualitativ)
4. Zerfallsprozesse: alpha, beta, gamma,
5. Nuklidkarte, Zerfallsgesetz und Zerfallsreihen
6. Nachweismethoden fur radioaktive Strahlung
7. Neutrinos: Motivation, Eigenschaften, Moderne Experimente
8. Ww radioaktiver Strahlung mit Materie
9. Strahlenschutz im Alltag
10. Radioaktivität in Technik: Fission und Fusion in der Energiegewinnung
11. Stellare Kernprozesse
12. Anwendungen der Isotopenphysik: Datierungsverfahren
Art der Leistungskontrolle und erlaubte Hilfsmittel
3-stündige schriftliche Prüfung am Ende des Semesters
(kombiniert freie Antworten und multiple choice)
(kombiniert freie Antworten und multiple choice)
Mindestanforderungen und Beurteilungsmaßstab
Verständnis der grundlegenden Phänomene, Experimente, Relationen, Methoden und Konzepte der Quanten-, Atom-, und Kernphysik
Letzte Änderung: Mo 07.09.2020 15:41