040031 KU Python for Finance I (MA) (2022S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 07.02.2022 09:00 to Mo 21.02.2022 23:59
- Registration is open from Th 24.02.2022 09:00 to Fr 25.02.2022 23:59
- Deregistration possible until Mo 14.03.2022 23:59
Details
max. 35 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
The course will be taught in person if use of the room's full capacity is permitted. Otherwise the course format will be digital.
-
Tuesday
01.03.
13:15 - 16:30
Digital
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß -
Tuesday
08.03.
13:15 - 16:30
Digital
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß -
Tuesday
15.03.
13:15 - 16:30
Digital
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß -
Tuesday
22.03.
13:15 - 16:30
Digital
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß -
Tuesday
29.03.
13:15 - 16:30
Digital
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß -
Tuesday
05.04.
13:15 - 16:30
Digital
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß -
Tuesday
26.04.
13:15 - 16:30
Digital
PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
The grade will be based on homework exercises that participants are expected to present in class, active class participation, and a final exam.
Minimum requirements and assessment criteria
60% homework exercises
10% active class participation
30% final examMinimum requirement for a positive grade: a total of 50%.
10% active class participation
30% final examMinimum requirement for a positive grade: a total of 50%.
Examination topics
All material covered in class.
Reading list
Main reference:Sheppard, Kevin. Introduction to Python for Econometrics, Statistics and Data Analysis, 2021. https://www.kevinsheppard.com/files/teaching/python/notes/python_introduction_2021.pdfMcKenney, Wes. Python for Data Analysis, 2nd edition, 2017. O'Reilly Media.Official Python documentation and tutorials: https://docs.python.org/3/tutorial/index.html
Association in the course directory
Last modified: Th 11.05.2023 11:26
2. Numerical Computing with NumPy
3. Data Analysis with pandas
4. Regression Analysis with statsmodels and linearmodelsFurthermore, data visualization with matplotlib will be part of all chapters.