Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform. NOTE: Courses where at least one unit is on-site are currently marked "on-site" in u:find.

Further information about on-site teaching and access tests can be found at https://studieren.univie.ac.at/en/info.

040038 VO Econometrics and Statistics (MA) (2019S)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften

Für diese LV gibt es KEIN Moodle!

Registration/Deregistration

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Wednesday 06.03. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 13.03. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 20.03. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 27.03. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 03.04. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 10.04. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 08.05. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Thursday 16.05. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 22.05. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 29.05. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 05.06. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 12.06. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 19.06. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 26.06. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock

Information

Aims, contents and method of the course

Datamining and big data based on case studies

During the course we will learn and discuss concepts of data mining and big data using case studies.
The case studies will cover areas such as

. Customer Relationship Management
. Fraud Detection
. Revenue Management
. Market Research

The presented concepts of data-naming and big data will include i.a.

. Sampling
. Supervised und unsupervised learning
. Multiple Regression,
. Logistic Regression
. Statistical Analysis of Frequency Data
. Analysis of variance
. Time series analysis

Assessment and permitted materials

Written Exam

Minimum requirements and assessment criteria

To pass this course you have to attain min 50% of the total points.

Examination topics

Analyze a given Problem and sketch a solution with Datamining methods

Understand (= be able to read and Interpret) statistical model equations
and Datamining concepts

More Details about the exam will be given during the course.

Reading list

Luis Torgo / "Data Mining with R Learning with Case Studies"
Folien die im Kurs diskutiert werden .

Association in the course directory

Last modified: Mo 07.09.2020 15:28