Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

040038 VO Econometrics and Statistics (MA) (2020S)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Instructions will be sent by per E-Mail.

All kinds of questions send to
Bertram.wassermann@univie.ac.at

Material can be downloaded from
https://homepage.univie.ac.at/bertram.wassermann/SS20/WS20index.html

  • Tuesday 03.03. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 10.03. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 31.03. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 21.04. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 28.04. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 05.05. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Tuesday 12.05. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 19.05. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 26.05. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 09.06. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 16.06. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 23.06. 16:45 - 18:15 Hörsaal 3 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

Datamining and big data based on case studies

During the course we will learn and discuss concepts of data mining and big data using case studies.
The case studies will cover areas such as

. Customer Relationship Management
. Fraud Detection
. Revenue Management
. Market Research

The presented concepts of data-naming and big data will include i.a.

. Sampling
. Supervised und unsupervised learning
. Multiple Regression,
. Logistic Regression
. Statistical Analysis of Frequency Data
. Analysis of variance
. Time series analysis

Assessment and permitted materials

Written Exam

Minimum requirements and assessment criteria

To pass this course you have to attain min 60% of the total points.

Examination topics

Analyze a given Problem and sketch a solution with Datamining methods

Understand (= be able to read and Interpret) statistical model equations
and Datamining concepts

More Details about the exam will be given during the course.

Reading list

Folien die im Kurs diskutiert werden .

Association in the course directory

Last modified: Fr 12.05.2023 00:12