Warning! The directory is not yet complete and will be amended until the beginning of the term.
040038 VO Data Analytics (MA) (2025S)
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Examination dates
-
Wednesday
02.07.2025
16:45 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock -
N
Tuesday
23.09.2025
16:45 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock -
Wednesday
12.11.2025
16:45 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 05.03. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 19.03. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 26.03. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 02.04. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 09.04. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 30.04. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 07.05. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 14.05. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 21.05. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 28.05. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 04.06. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 11.06. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 18.06. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 25.06. 16:45 - 18:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
Written Exam, Multiple Choice, no documents or aids are permitted or necessary
Minimum requirements and assessment criteria
To pass this course you have to attain min 60% of the total points of the final exam.
Examination topics
Analyze a given Problem and sketch a solution with Datamining methodsUnderstand (= be able to read and Interpret) statistical model equations
and Datamining conceptsMore Details about the exam will be given during the course.
and Datamining conceptsMore Details about the exam will be given during the course.
Reading list
Folien und Audio
Themenbezogen Literaturhinweise während des Kurses
Themenbezogen Literaturhinweise während des Kurses
Association in the course directory
Last modified: Tu 22.07.2025 14:25
The case studies will cover areas such as. Customer Relationship Management
. Fraud Detection
. Revenue Management
. Market ResearchThe presented concepts of data-naming and big data will include i.a.. Multiple Regression,
. Logistic Regression
. Statistical Analysis of Frequency Data
. Analysis of variance
. Time series analysis
. Supervised und unsupervised learning