040077 KU Advanced Business Analytics (MA) (2022S)
Continuous assessment of course work
Labels
MIXED
The course language is English.Only students who signed up for the class in univis/u:space are allowed to take the class (that means, that you have to at least be on the waiting list if you want to take this class). No exceptions possible.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 07.02.2022 09:00 to Mo 21.02.2022 23:59
- Registration is open from Th 24.02.2022 09:00 to Fr 25.02.2022 23:59
- Deregistration possible until Mo 14.03.2022 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
This class will be offered in hybrid form. All appointments will be streamed through Moodle/Zoom. You will need a camera and microphone to participate online.
First meeting: Tuesday, March 1st, 11:30-13:00, SR1, Kolingasse 14-16-
Tuesday
01.03.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
02.03.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
08.03.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
09.03.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
15.03.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
16.03.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
22.03.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
23.03.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
29.03.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
30.03.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
05.04.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
06.04.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
26.04.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
27.04.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
03.05.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
04.05.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
10.05.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
11.05.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
17.05.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
18.05.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
24.05.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
25.05.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
31.05.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
01.06.
09:45 - 11:15
Hybride Lehre
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
08.06.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
14.06.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
15.06.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
21.06.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
22.06.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Tuesday
28.06.
11:30 - 13:00
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01 -
Wednesday
29.06.
09:45 - 11:15
Hybride Lehre
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock
PC-Seminarraum 1, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
Assessment and permitted materials
Midterm test (35%): April 05, 11:30
Final test (35%): **June 29, 09:45** (corrected 04/03/2022)
Homework (30%):
-- Submission 1: April 27
-- Submission 2: June 8
Final test (35%): **June 29, 09:45** (corrected 04/03/2022)
Homework (30%):
-- Submission 1: April 27
-- Submission 2: June 8
Minimum requirements and assessment criteria
In total, 100 points can be achieved. Grades are assigned as follows:
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
Examination topics
Midterm test/Final test: Slides and topics covered in the lectures and exercises.
Homework: topics covered in the exercises.
Homework: topics covered in the exercises.
Reading list
Provost, Foster; Fawcett, Tom (2013): Data Science for Business. What you need to know about data mining and data-analytic thinking. Köln: O`Reilly.Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.Sutton, Richard S.; Barto, Andrew G. (2018): Reinforcement learning. An introduction / Richard S. Sutton and Andrew G. Barto. Second edition. Cambridge, Massachusetts: The MIT Press (Adaptive computation and machine learning).Witten, I. H. (2017): Data mining. Practical machine learning tools and techniques. Fourth edition. Amsterdam: Elsevier.Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin; Karpatne, Anuj (2019): Introduction to Data Mining, Global Edition. 2nd ed. Harlow, United Kingdom: Pearson Education Limited.
Association in the course directory
Last modified: Th 11.05.2023 11:27
They will be able to identify the underlying analytics tasks of a business problem, to select and apply appropriate data mining algorithms, and to derive plans of actions from their outputs to solve the business problems. The students will have an overview of relevant analytics methods, including a selection of particular methods such as explorative data analysis, descriptive and predictive modelling (e.g. cluster analysis, association analysis, classification).