040077 KU Advanced Business Analytics (MA) (2025S)
Continuous assessment of course work
Labels
The course language is English.Only students who signed up for the class in univis/u:space are allowed to take the class (that means, that you have to at least be on the waiting list if you want to take this class). No exceptions possible.
Tu 29.04. 11:30-13:00
PC-Seminarraum 1, Kolingasse 14-16, OG01
PC-Seminarraum 3, Kolingasse 14-16, OG02
PC-Seminarraum 3, Kolingasse 14-16, OG02
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 10.02.2025 09:00 to Tu 18.02.2025 12:00
- Registration is open from We 26.02.2025 09:00 to Th 27.02.2025 12:00
- Deregistration possible until Fr 14.03.2025 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 04.03. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 05.03. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 11.03. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 18.03. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 19.03. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 25.03. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 26.03. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 01.04. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 02.04. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 08.04. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 09.04. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
-
N
Tuesday
29.04.
11:30 - 13:00
PC-Seminarraum 1, Kolingasse 14-16, OG01
PC-Seminarraum 3, Kolingasse 14-16, OG02 - Wednesday 30.04. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 06.05. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 07.05. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 13.05. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 14.05. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 20.05. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 21.05. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 27.05. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 28.05. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 03.06. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 04.06. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 10.06. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 11.06. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
-
Tuesday
17.06.
11:30 - 13:00
PC-Seminarraum 1, Kolingasse 14-16, OG01
PC-Seminarraum 3, Kolingasse 14-16, OG02 - Wednesday 18.06. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 24.06. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 25.06. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
Assessment and permitted materials
Midterm test (35%): Tue, April 29, 2025, 11:30–13:00
Final test (35%): Tue, June 17, 2025, 11:30–13:00
Homework (30%):
-- Submission 1: Wed, April 09, 2025
-- Submission 2: Wed, June 04, 20251) To pass this course, at least 50% of the total points must be achieved.
2) The use of AI tools (e.g. ChatGPT) for the production of texts is only allowed if this is expressly requested by the course instructor (e.g. for specific assignments).
3) To ensure good scientific practice, the course instructor may request a "grade-relevant talk" (plausibility check) regarding the submitted written work. This interview has to be completed successfully.For more details, see here: https://ufind.univie.ac.at/en/vvz_sub.html?path=316467&from=1&to=2
Final test (35%): Tue, June 17, 2025, 11:30–13:00
Homework (30%):
-- Submission 1: Wed, April 09, 2025
-- Submission 2: Wed, June 04, 20251) To pass this course, at least 50% of the total points must be achieved.
2) The use of AI tools (e.g. ChatGPT) for the production of texts is only allowed if this is expressly requested by the course instructor (e.g. for specific assignments).
3) To ensure good scientific practice, the course instructor may request a "grade-relevant talk" (plausibility check) regarding the submitted written work. This interview has to be completed successfully.For more details, see here: https://ufind.univie.ac.at/en/vvz_sub.html?path=316467&from=1&to=2
Minimum requirements and assessment criteria
In total, 100 points can be achieved. Grades are assigned as follows:
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
Examination topics
Midterm test/Final test: Slides and topics covered in the lectures and exercises.
Homework: topics covered in the exercises.
Homework: topics covered in the exercises.
Reading list
Provost, Foster; Fawcett, Tom (2013): Data Science for Business. What you need to know about data mining and data-analytic thinking. Köln: O`Reilly.
Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.
Sutton, Richard S.; Barto, Andrew G. (2018): Reinforcement learning. An introduction / Richard S. Sutton and Andrew G. Barto. Second edition. Cambridge, Massachusetts: The MIT Press (Adaptive computation and machine learning).
Witten, I. H. (2017): Data mining. Practical machine learning tools and techniques. Fourth edition. Amsterdam: Elsevier.
Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin; Karpatne, Anuj (2019): Introduction to Data Mining, Global Edition. 2nd ed. Harlow, United Kingdom: Pearson Education Limited.
Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.
Sutton, Richard S.; Barto, Andrew G. (2018): Reinforcement learning. An introduction / Richard S. Sutton and Andrew G. Barto. Second edition. Cambridge, Massachusetts: The MIT Press (Adaptive computation and machine learning).
Witten, I. H. (2017): Data mining. Practical machine learning tools and techniques. Fourth edition. Amsterdam: Elsevier.
Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin; Karpatne, Anuj (2019): Introduction to Data Mining, Global Edition. 2nd ed. Harlow, United Kingdom: Pearson Education Limited.
Association in the course directory
Last modified: We 02.04.2025 12:45
They will be able to identify the underlying analytics tasks of a business problem, to select and apply appropriate data mining algorithms, and to derive plans of actions from their outputs to solve the business problems. The students will have an overview of relevant analytics methods, including a selection of particular methods such as explorative data analysis, descriptive and predictive modelling (e.g. cluster analysis, association analysis, classification).