040100 VO Mathematics 2 (2018S)
Labels
Um Zugriff zu den Unterlagen in Moodle zu erhalten, melden Sie sich bitte via U:Space für die VO an.Es findet ein freiwilliges Tutorium (Alexandra Posa) statt: DI wtl von 06.03.2018 bis 26.06.2018 15.00-16.30 Ort: Hörsaal 2 Oskar-Morgenstern-Platz 1 Erdgeschoß;
Achtung! Am DI 19.06.2018 15.00-16.30 Ort: Hörsaal 15 Oskar-Morgenstern-Platz 1 2.Stock
Achtung! Am DI 19.06.2018 15.00-16.30 Ort: Hörsaal 15 Oskar-Morgenstern-Platz 1 2.Stock
Details
Language: German
Examination dates
-
Monday
25.06.2018
13:15 - 15:30
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß - Tuesday 25.09.2018 16:00 - 18:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 30.01.2019 10:45 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 26.02.2019 15:00 - 18:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Lecturers
Classes (iCal) - next class is marked with N
Die Anmeldung zur Vorlesung wird empfohlen, um Zugriff zum Kurs in Moodle zu erhalten.
- Monday 05.03. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 19.03. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 09.04. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 16.04. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 23.04. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 07.05. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 14.05. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 28.05. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 04.06. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 11.06. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 18.06. 13:15 - 16:30 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Assessment and permitted materials
written exam about the topics discussed in the lecturePermitted materials for the exam:
No documents (neither notes nor formularies) are allowed. A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that mobile phones, smart watches etc. must be out of reach during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
No documents (neither notes nor formularies) are allowed. A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that mobile phones, smart watches etc. must be out of reach during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
Minimum requirements and assessment criteria
Für eine positive Beurteilung müssen bei der Prüfung 50% der maximalen Punktezahl erreicht werden.Punkteschema: siehe Moodle
Examination topics
Stoff der Prüfung ist der Stoff, der in der Vorlesung besprochen wurde, siehe auch:
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/ss18/040100_syllabus.html
(Diese Liste wird nach jeder VO aktualisiert.)
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/ss18/040100_syllabus.html
(Diese Liste wird nach jeder VO aktualisiert.)
Reading list
A. Gaunersdorfer, Mathematik 2 -- Optimierung in den Wirtschaftswissenschaften, Skriptum, 2018.Further readings:K. Binmore and J. Davies, Calculus: Concepts and Methods, Cambridge University Press, 2001.
A. C. Chiang and K. Wainwright, Fundamental Methods of Mathematical Economics (4th ed.), McGraw-Hill, 2005.
A. C. Chiang, Fundamental Methods of Mathematical Economics (3rd ed.), McGraw-Hill, 1984, Part 6.
H. A. Taha, Operations Research: An Introduction (8th ed.), Pearson Prentic Hall, 2007.
W. L. Winston, Operations Reseach: Applications and Algorithms (4th ed.), Brooks/Cole, 2004.
A. C. Chiang and K. Wainwright, Fundamental Methods of Mathematical Economics (4th ed.), McGraw-Hill, 2005.
A. C. Chiang, Fundamental Methods of Mathematical Economics (3rd ed.), McGraw-Hill, 1984, Part 6.
H. A. Taha, Operations Research: An Introduction (8th ed.), Pearson Prentic Hall, 2007.
W. L. Winston, Operations Reseach: Applications and Algorithms (4th ed.), Brooks/Cole, 2004.
Association in the course directory
Last modified: Mo 07.09.2020 15:28
as well as their application in business and economics.Contents:
1. Introduction: optimization problems in business and economics
2. Differential calculus for functions of several variables
(real valued functions of several variables, some basics terms of topoloy, partial derivatives, derivative, tangent plane, gradient, vector functions, Jacobian, chain rule, directional derivatives, total differential, geometric interpretation of the gradient, second derivatives, Hessian, second directional derivative)
3. Convexity
(convex sets, convex and concave functions in several variables)
4. Optimization of scalar valued functions
(stationary points, second order conditions, comparative statics, envelope theorem)
Inverse and implicit functions
5. Optimization with equality constraints: Lagrange's method
(first and second order conditions, interpretation of the Lagrange multipliers, conditions for global optima, quasiconcavity and quasiconvexity, economic applications)
6. Nonlinear programming
(convex programs, Kuhn-Tucker conditions, constraint qualifications, saddle point condition)
7. Linear programming
(model formulation, assumptions underlying a linear planning model, graphic solution of two-variable programs, basic solutions, characterization of the sets of feasible and optimal solutions, simplex method, formal structure of the simplex tabelaus, alternative optimal solutions, duality, complementary slackness, economic interpretation of the dual programme, interpretation of a computer solution)