Warning! The directory is not yet complete and will be amended until the beginning of the term.
040100 VO Mathematics 2 (2025S)
Labels
ON-SITE
Um Zugriff zu den Unterlagen in Moodle zu erhalten, melden Sie sich bitte via U:Space für die VO an.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- N Monday 03.03. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 04.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 10.03. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 11.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 17.03. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 18.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 24.03. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 25.03. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 31.03. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 01.04. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 07.04. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 08.04. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 28.04. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 29.04. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 05.05. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 06.05. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 12.05. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 13.05. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 19.05. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 20.05. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 26.05. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 27.05. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 02.06. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 03.06. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Tuesday 10.06. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 16.06. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 17.06. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 23.06. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Tuesday 24.06. 15:00 - 16:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
- Monday 30.06. 13:15 - 14:45 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
-
Tuesday
01.07.
15:00 - 18:15
Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
written exam about the topics discussed in the lecture and the UEPermitted materials for the exam:
- Handwritten A4 sheet;
- A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that it is not allowed to have any WiFi or Bluetooth capable devices with you.
Mobile phones, smart watches etc. must be out of reach and switched off during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
- Handwritten A4 sheet;
- A simple, non-programmable calculator, without matrix operations, which does not plot graphs, solve equations, and does not compute derivatives or integrals is allowed.Please note that it is not allowed to have any WiFi or Bluetooth capable devices with you.
Mobile phones, smart watches etc. must be out of reach and switched off during the exam.For more information please visit
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
Minimum requirements and assessment criteria
see German webpage
Examination topics
see German webpage
Reading list
A. Gaunersdorfer, Mathematik 2 - Optimierung in den Wirtschaftswissenschaften, Skriptum, Februar 2024.
(Korrekturen und Ergänzungen zu älteren Auflagen des Skriptums werden in Moodle zur Verfügung gestellt.)Weitere Literaturhinweise finden Sie im Skriptum, in Moodle und unter
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
(Korrekturen und Ergänzungen zu älteren Auflagen des Skriptums werden in Moodle zur Verfügung gestellt.)Weitere Literaturhinweise finden Sie im Skriptum, in Moodle und unter
http://homepage.univie.ac.at/andrea.gaunersdorfer/teaching/mathe2.html
Association in the course directory
Last modified: Fr 10.01.2025 00:01
as well as their application in business and economics.For more information see the German webpage.Contents:
1. Introduction: optimization problems in business and economics
2. Differential calculus for functions of several variables
(real valued functions of several variables, some basics terms of topoloy, partial derivatives, derivative, tangent plane, gradient, vector functions, Jacobian, chain rule, directional derivatives, total differential, geometric interpretation of the gradient, second derivatives, Hessian, second directional derivative)
3. Convexity
(convex sets, convex and concave functions in several variables)
4. Optimization of scalar valued functions
(stationary points, second order conditions, comparative statics, envelope theorem)
Inverse and implicit functions
5. Optimization with equality constraints: Lagrange's method
(first and second order conditions, interpretation of the Lagrange multipliers, conditions for global optima, quasiconcavity and quasiconvexity, economic applications)
6. Nonlinear programming
(convex programs, Kuhn-Tucker conditions, constraint qualifications, saddle point condition)
7. Linear programming
(model formulation, assumptions underlying a linear planning model, graphic solution of two-variable programs, basic solutions, characterization of the sets of feasible and optimal solutions, simplex method, formal structure of the simplex tabelaus, alternative optimal solutions, duality, complementary slackness, economic interpretation of the dual programme, interpretation of a computer solution)