040101 KU Advanced Business Analytics (MA) (2022W)
Continuous assessment of course work
Labels
ON-SITE
The course language is English.Only students who signed up for the class in univis/u:space are allowed to take the class (that means, that you have to at least be on the waiting list if you want to take this class). No exceptions possible.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 12.09.2022 09:00 to Fr 23.09.2022 12:00
- Registration is open from We 28.09.2022 09:00 to Th 29.09.2022 12:00
- Deregistration possible until Fr 14.10.2022 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
This class will be offered on-site and online. All live appointments will be streamed through Moodle/Zoom. You can participate on-site or online with a microphone/camera.
- Tuesday 04.10. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 05.10. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 11.10. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 12.10. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 18.10. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 19.10. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 25.10. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 08.11. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 09.11. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 15.11. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 16.11. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 22.11. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 23.11. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 29.11. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 30.11. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 06.12. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 07.12. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 13.12. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 14.12. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 10.01. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 11.01. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 17.01. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 18.01. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 24.01. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Wednesday 25.01. 09:45 - 11:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Tuesday 31.01. 11:30 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
Information
Aims, contents and method of the course
Assessment and permitted materials
Midterm test (35%): Wed, Nov 30, 09:45-11:15
Final test (35%): Wed, Jan 25, 09:45-11:15
Homework (30%):
-- Submission 1: Wed, Nov 30
-- Submission 2: Wed, Jan 18
Final test (35%): Wed, Jan 25, 09:45-11:15
Homework (30%):
-- Submission 1: Wed, Nov 30
-- Submission 2: Wed, Jan 18
Minimum requirements and assessment criteria
In total, 100 points can be achieved. Grades are assigned as follows:
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
[88,100]: 1
[76,88[ : 2
[63,76[ : 3
[50,63[ : 4
< 50 : 5
Examination topics
Midterm test/Final test: Slides and topics covered in the lectures and exercises.
Homework: topics covered in the exercises.
Homework: topics covered in the exercises.
Reading list
Provost, Foster; Fawcett, Tom (2013): Data Science for Business. What you need to know about data mining and data-analytic thinking. Köln: O`Reilly.
Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.
Sutton, Richard S.; Barto, Andrew G. (2018): Reinforcement learning. An introduction / Richard S. Sutton and Andrew G. Barto. Second edition. Cambridge, Massachusetts: The MIT Press (Adaptive computation and machine learning).
Witten, I. H. (2017): Data mining. Practical machine learning tools and techniques. Fourth edition. Amsterdam: Elsevier.
Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin; Karpatne, Anuj (2019): Introduction to Data Mining, Global Edition. 2nd ed. Harlow, United Kingdom: Pearson Education Limited.
Berthold, Michael R.; Borgelt, Christian; Höppner, Frank; Klawonn, Frank; Silipo, Rosaria (2020): Guide to Intelligent Data Science. Cham: Springer International Publishing.
Sutton, Richard S.; Barto, Andrew G. (2018): Reinforcement learning. An introduction / Richard S. Sutton and Andrew G. Barto. Second edition. Cambridge, Massachusetts: The MIT Press (Adaptive computation and machine learning).
Witten, I. H. (2017): Data mining. Practical machine learning tools and techniques. Fourth edition. Amsterdam: Elsevier.
Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin; Karpatne, Anuj (2019): Introduction to Data Mining, Global Edition. 2nd ed. Harlow, United Kingdom: Pearson Education Limited.
Association in the course directory
Last modified: Th 18.08.2022 11:47
They will be able to identify the underlying analytics tasks of a business problem, to select and apply appropriate data mining algorithms, and to derive plans of actions from their outputs to solve the business problems. The students will have an overview of relevant analytics methods, including a selection of particular methods such as explorative data analysis, descriptive and predictive modelling (e.g. cluster analysis, association analysis, classification).