Universität Wien

040114 UK Optimization under Uncertainty (MA) (2019S)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 50 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 04.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 11.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 18.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 25.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 01.04. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 08.04. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 29.04. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 06.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 13.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 20.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 27.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 03.06. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 17.06. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 24.06. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

Study practically relevant aspects of operations research including in particular the consideration of uncertain input data (stochastic optimization, robust optimization)

The main themes are discussed first in form of a lecture. Homeworks then give the opportunity to apply and deepen the teaching material.

Assessment and permitted materials

written exam, blackboard exercises

Minimum requirements and assessment criteria

This course should help graduate students to:
a) develop mathematical models for (real world) optimization problems
b) apply different concepts to treat uncertain input data in optimization and understand the consequences implied by choosing on of these techniques

The test measures the ability to solve simple examples in the dicussed fields.

Examination topics

1) Single stage stochastic optmiization, in particular mean-variance optimization, expected utility, acceptability measures
2) Decision trees
3) Markov chains
4) Markov decision processes

Reading list

Hillier/Lieberman, Introduction to Operations Research, 7th edition, 2017

Association in the course directory

Last modified: Mo 07.09.2020 15:28