040114 UK Optimization under Uncertainty (MA) (2019S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 11.02.2019 09:00 to We 20.02.2019 12:00
- Registration is open from Tu 26.02.2019 09:00 to We 27.02.2019 12:00
- Deregistration possible until Th 14.03.2019 23:59
Details
max. 50 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 11.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 18.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 25.03. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 01.04. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 08.04. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 29.04. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 06.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 13.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 20.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 27.05. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 03.06. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 17.06. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 24.06. 08:00 - 09:30 Seminarraum 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Information
Aims, contents and method of the course
Study practically relevant aspects of operations research including in particular the consideration of uncertain input data (stochastic optimization, robust optimization)The main themes are discussed first in form of a lecture. Homeworks then give the opportunity to apply and deepen the teaching material.
Assessment and permitted materials
written exam, blackboard exercises
Minimum requirements and assessment criteria
This course should help graduate students to:
a) develop mathematical models for (real world) optimization problems
b) apply different concepts to treat uncertain input data in optimization and understand the consequences implied by choosing on of these techniquesThe test measures the ability to solve simple examples in the dicussed fields.
a) develop mathematical models for (real world) optimization problems
b) apply different concepts to treat uncertain input data in optimization and understand the consequences implied by choosing on of these techniquesThe test measures the ability to solve simple examples in the dicussed fields.
Examination topics
1) Single stage stochastic optmiization, in particular mean-variance optimization, expected utility, acceptability measures
2) Decision trees
3) Markov chains
4) Markov decision processes
2) Decision trees
3) Markov chains
4) Markov decision processes
Reading list
Hillier/Lieberman, Introduction to Operations Research, 7th edition, 2017
Association in the course directory
Last modified: Mo 07.09.2020 15:28